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Abstract

Chinese poses a challenge for models of compound processing, since the basic notions of
morpheme, word and phrase are not consistently distinguished by native speakers.  It is
thus proposed that the mental lexicon consists of linked and overlapping listemes (in the
sense of Di Sciullo and Williams 1987) which can potentially be of any size (morpheme,
word, phrase).  One implication of this approach for compound processing is that cross-
morphemic predictability should play an important role:  the more predictable one
morpheme is from the other, the easier the compound should be to access.  To study this
implication, cross-morphemic predictability is quantified using the measure of Mutual
Information from information theory, which divides the frequency of the constituent of
interest (i.e. a compound) by the frequencies of the components (i.e. morphemes).  This
leads to two specific predictions:  compound frequency should have a positive effect on
lexical access, but morpheme frequency should have a negative effect.  In Experiment 1, it
is demonstrated that a very simple connectionist network, built according to the overlapping
listeme approach, conforms to these two predictions.  This suggests that separate effects of
word and morpheme frequency need not require separate processing levels for words and
morphemes.  Experiment 2 then compares the network's behavior with Chinese native
speakers in a lexical decision task involving spoken Mandarin Chinese compounds.  As
predicted, there was a positive effect of word frequency on response speed and accuracy,
and a negative effect of morpheme frequency.  Suggestions are made for reconciling these
results with the more familiar positive or neutral morpheme frequency effects found in other
studies.
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1. Introduction

The central question in the psycholinguistics of morphology concerns what role, if any,
the component morphemes play in the processing of words.  This question is complex
enough in the languages which have provided the bulk of the data, but in Chinese, the
peculiar properties of this language turn it into a multidimensional challenge of quite
fascinating proportions, with implications, we think, for the understanding of word
processing cross-linguistically.

First, since Chinese doesn't have much in the way of inflection, and productive
affixation processes are rather limited, focus must be placed on compounds, a structure that
has been less intensively investigated in the psycholinguistic literature (though one hopes this
special issue will go some way to redress this imbalance).  Compounding is itself already
understudied in linguistics as compared to other sorts of morphology (Fabb 1998), and so
psycholinguists have less guidance about what theories to test or challenge.

Second, in spite of their ubiquity in the Chinese lexicon, Chinese compounds don't fit
well into the standard definition (i.e. compounds are concatenations of free morphemes).
Instead, as Starosta, Kuiper, Ng and Wu (1997) have argued, many Chinese words
traditionally labeled compounds are perhaps not.  Thus they suggest that words that are
completely semantically opaque (e.g. dongxi "thing", but literally "east-west") should be
treated as monomorphemic; the characters misleadingly imply a morphological structure that
is actually mere historical residue.  At the same time, they point out that even clearly
bimorphemic words may not be true compounds, since often the second morpheme is used in
a semantically restricted way more typical of affixation than compounding.  For example,
the role of kai "open" in zoukai "leave" (literally "walk-open") seems to be parallel to that of
able in readable; that is, it is an affix, not the head of a compound, in spite of the existence of
a free morpheme written with the same character.  All this suggests that even if we had
separate processing models that worked well for monomorphemic forms, for affixation, and
for compounding, we would still need some way of determining which model to apply in any
particular case in Chinese.

A third complicating property of Chinese morphology, in some ways related to the
second, is the implication from the orthography that the basic unit is the character, not the
word or morpheme per se.  Like a morpheme, a character is traditionally thought of as the
smallest unit of meaning by Chinese readers, but like a word, it is also considered the
smallest unit of discourse.  Chinese speakers get very little evidence one way or the other
about what constitutes a "word" in the linguistic sense:  words are not separated by spaces in
the standard orthography, entries in dictionaries are not for "words" but for separate
characters (with the exception of rather recent attempts like DeFrancis 1996), sample usages
of characters in dictionaries don't distinguish between what linguists would consider words,
idioms, and syntactic phrases, and most fundamentally of all, there is no consistent word for
"word" in Chinese (zi primarily means character, ci is also often used for syntactic phrases).

This traditional view among Chinese speakers is challenged by the tradition in Western
linguistics to treat orthography as purely parasitic on "real language".   DeFrancis (1989)
even goes so far as to suggest that Chinese characters form something more like a syllabary
than a set of logographs.  Moreover, solid linguistic arguments can be made for the
existence of words in Chinese (see e.g. Duanmu 1998).  It is thus extremely tempting to
declare that Chinese native speakers have simply been fooled by their writing system, and
that in reality, morphemes and words are the crucial units, not characters.  However, there is
some experimental evidence that the morpheme/word model doesn't translate perfectly into
Chinese.  For example, Hoosain (1992) gave short texts of written Chinese to college
students (native speakers of Cantonese), and found many disagreements on the proper way to
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segment the text into words.  Tsai, McConkie and Zheng (1998) followed up on this with a
more thorough word-segmentation task with Mandarin-speaking college students in mainland
China and Taiwan.  Like the earlier study, there was much variation in how readers
segmented words in the text.  Moreover, readers from mainland China were more consistent
in their word segmentations, suggesting that judgments of wordhood can be affected by
experience with alternative orthographies that do put spaces between words (i.e. Pinyin, a
romanization system used in mainland China but not Taiwan).  However, since cross-group
correlations were quite high, the authors conclude that the variation that was found should be
ascribed to varying reader thresholds for judging the status of boundaries (i.e. whether to
judge them as separating morphemes, words, or phrases), not to a complete lack of the
"word" concept.

There is a fourth property of Chinese that complicates the picture still further:  rampant
homophony.  Even if tone is taken into account, Mandarin has far fewer than 1500 distinct
syllables, each written with one to thirty (or more) different characters (Ho 1976).  If tone is
ignored (which may be justified by the surprisingly minor importance of tone in perception
and lexical access; see e.g. Taft and Chen 1992, Ye and Connine 1999), the number of
homophones per syllable type jumps fourfold.  This makes it extremely implausible that
spoken Chinese is processed morpheme by morpheme.  Listeners would constantly be
garden-pathing, making tentative guesses about the morphemic identity of each syllable,
guesses that could not be resolved without cross-checking with tentative guesses about
adjacent syllables.  As Packard (1999) concludes, the basic unit in the lexical access of
spoken Chinese is therefore likely to be the word.  This conclusion would be quite
convincing if it weren't for the fact, discussed above, that native speakers seem to disagree
about what the "word" is in Chinese.

A possible way out of this dilemma is to demote the notion of "word" in the linguist's
sense from its status as sole goal of the lexical parser.  This is not to say that we claim that
the real unit in Chinese is actually the character, as traditionally thought.  In addition to the
problems just mentioned for spoken word recognition, there is the robust finding of word-
frequency effects in lexical access, both for written and spoken Chinese words (see references
described below), suggesting that whole words are indeed listed, in some sense, in the lexicon.
Instead, what we are claiming is that the Chinese mental lexicon doesn't look much like either
a Western word-based dictionary or a Chinese character-based dictionary.  In
psycholinguistic terms, we reject both purely word-based theories of the mental lexicon (e.g.
Butterworth 1983) and purely morpheme-based theories (e.g. Taft and Forster 1976).  But
we also reject the third commonly offered possibility, namely a lexicon with separate levels
for words and for morphemes (e.g. Zhou and Marslen-Wilson 1994, 1995).  If the problem
is precisely how one should distinguish morphemes from words (and words from phrases), it
is not solved by placing them on different levels by fiat.

We suggest that something closer to the right approach is to imagine a lexicon with
entries of any size -- morpheme (written with one character or more), word, phrase -- all
represented at the same level, but with links between them to indicate overlaps in form and/or
meaning.  To take an example from Hoosain's (1992) word segmentation experiment, the
three-character string yi ("already") jin ("enter") le ("completive aspect") could be accessed as
three lexical units (yi, jin, and le) and/or as two (yijin and le) and/or as one (yijinle),
depending on how they happened to be retrieved by a particular person during production or
parsed during comprehension.  In other words, we suggest that psycholinguists should focus
more on what Di Sciullo and Williams (1987) call the LISTEME, a form-meaning unit defined
solely by its listing in the mental lexicon, regardless of its syntactic or morphological status.
The degree to which Chinese speakers consider any given meaningful string to be a
multisyllabic morpheme, versus a semantically opaque compound, versus a semantically
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transparent compound, versus a syntactic phrase, would to an important extent depend on
how often that particular string has been encountered (with that meaning) in the past.  This
overlapping listeme approach shares basic insights with morphological theories that question
the morpheme's status as fundamental atom of the lexicon (e.g. Anderson 1992, Bochner
1993) and particularly with network-type models that are concerned with the effect of
frequency on morphological processing (e.g. Bybee 1985, Smith 1995, Stemberger 1998, and
Rueckl and Raveh 1999).

Of course the overlapping listeme approach, as described, seems to gloss rather quickly
over issues that are of deep concern to morphologists (namely, the roles of semantics,
morphological structure, and syntax in the knowledge of words), but in this paper we don't
intend to present this approach as a reductionist theory of everything that needs to be
explained in morphology.  Nevertheless, it does bring some useful insights.  For example, a
compound is considered to be semantically transparent if its meaning can be derived by
combining the meanings of its component morphemes.  This presupposes that the meanings
of the morphemes themselves are clear, and this can only be the case if the morphemes
sometimes appear in isolation (i.e. as words with clear meanings) or appear in a certain
number of other semantically transparent compounds.  Either way, the component
morphemes will tend to find themselves in a variety of contexts (e.g. in novel syntactic
phrases or compounds), and this in turn will tend to make the processing system treat the
components of a transparent compound as separate listemes.  A transparent compound
should then have more of a tendency to be processed via concatenation of separately accessed
listemes than an opaque compound, which should tend to be accessed as a whole listeme.  If
the overlapping listeme approach is correct, there should be situations where it is this
difference in listeme access, rather than semantics itself, that causes differences in the
behavior of transparent and opaque compounds (though see Libben 1998 for a more
sophisticated analysis of the importance of transparency to compound processing).

More generally, the overlapping listeme approach predicts that the degree to which a
given string is processed as a listeme depends on how predictable the component units are
from each other.  In a string of two Chinese characters, for instance, the more predictable the
second character is from the first, the more likely one would expect a reader to access the
string as a whole constituent.  At one extreme, we have the so-called binding word (Taft and
Zhu 1995), in which each character is entirely predictable from the other (e.g. the morpheme
qiuyin "earthworm", written with two characters that only appear in this one word).  At the
other extreme, where one character is almost completely unpredictable from the other, we
might expect readers to consider the string a syntactic phrase (assuming of course that it
conforms to syntactic rules).

One standard measure of the mutual predictability of adjacent linguistic units employs
the notion of MUTUAL INFORMATION (MI) from information theory (see Church and Hanks
1990 for basic concepts and applications to cross-word collocations in English).  MI takes
the probability at which the units actually cooccur (i.e. the frequency of the collocation of
interest as a proportion of the total set of collocations in the corpus) and divides it by the
probability expected if the two units cooccurred by chance (i.e. the product of the frequencies
of each unit as a proportion of the total number of units in the corpus).  This division
controls for the effect of random collocations (i.e. if two highly frequent units often cooccur,
this still might be due purely to chance, not because they have any particular affinity for each
other).  In addition, MI is transformed onto a logarithmic scale (base two), so that the
midpoint (i.e. where two units are completely unpredictable from the other) has the MI value
of 0.  The formula for MI is thus as given below.

[INSERT FIGURE 1]
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This measure is commonly used in computational linguistics, where it has proven its
worth in corpus analyses that have focused on precisely the problem we discussed earlier:
the segmentation of Chinese text into words.  For example, using an MI of 2.5 as a cutoff
point for wordhood, Sproat and Shih (1990) built a parser that was highly successful in
segmenting words in a newspaper corpus, giving an accuracy rate of about 94% (as compared
with word segmentations produced by linguists).  Wang, Huang and Chen (1995) and Huang,
Ahrens and Chen (1998) applied MI calculations to corpus analyses of more detailed
questions of wordhood in Chinese, achieving similar success.  As with any computational
model that mimics human abilities, it is not necessarily the case that the computers and the
humans are processing in precisely the same way, but results such as these are nevertheless
inspiring.  Could it be that Chinese readers (and listeners) deal with some of the complex
problems posed by word and morpheme segmentation by performing some sort of automatic
calculation of cross-unit predictability?

To make this suggestion precise and testable, we adopted MI as the measure of cross-
morphemic predictability.  Other ways of measuring predictability exist, however.  For
example, one may calculate the cross-morphemic predictability of a compound AB as the
frequency of AB divided by the cumulative frequencies of all other compounds that contain A
or B (as suggested to us by Dominiek Sandra, personal communication).  The numerator
here is parallel to that in the MI formula (except that MI uses compound frequency as a
proportion of all two-character strings in the corpus).  However, the denominator in this
alternative formula differs somewhat from that used in calculating MI.  This is because the
MI denominator is the product of the (proportional) frequencies of A and B, whereas in the
alternative formula the denominator is roughly the sum of these frequencies (more precisely,
the sum of the frequencies of all compounds containing one or both of them).

Nevertheless, both are reliable measures of predictability.  To see this, consider two
artificial corpora, one consisting of a sequence of three tokens of the compound AB, i.e. L1 =
ABABAB, and one containing this as a substring but also including other bimorphemic
compounds, e.g. L2 = ABABABACAD.  Intuitively, the cross-morphemic predictability of
AB in L1 is higher than in L2.  The alternative formula gives the values for AB of 3/3 = 1.0
in L1, and 3/5 = 0.6 in L2; as desired, the predictability is higher in L1.  The MI formula
gives a value for AB in L1 of log2((3/5)/((3/6)*(3/6))) (since there are three tokens of AB out
of the set of five possible two-character substrings of ABABAB and three tokens each of A
and B out of the set of six morpheme tokens), which works out to log2(2.4) = 1.26, whereas in
L2, MI(AB) = log2((3/9)/((5/10)*(3/10))) = log2(2.2) = 1.15.  Thus as with the alternative
formula, the predictability is correctly described as higher in L1.  Of course, in practice it is
difficult to calculate the frequency of a bimorphemic compound as a proportion of all
possible two-morpheme strings in a corpus; estimating it by dividing compound frequency by
the number of morpheme tokens in the corpus (which is what we did in the MI calculations in
this paper) gives virtually identical results with a corpus of any realistic size.  Importantly,
for either formula, a key property holds:  cross-morphemic predictability is positively
correlated with compound frequency and negatively correlated with morpheme frequency.
Teasing apart any different predictions made by different ways of calculating predictability is
beyond the scope of this paper; we adopt MI because of our interest in linking research on the
morphological decomposition of compounds with that on the segmentation of words from
text or speech.  Hence from now on we will tend to use the notions of "mutual information"
and "predictability" relatively interchangeably.

As just noted, the formula for MI (and probably most reasonable alternatives) makes two
specific predictions.  First, we expect that high word frequency (the value in the numerator)
should ease lexical access, since this will make the compound as a whole more listeme-like.
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This is of course a well-established fact for words in general (e.g. Forster and Chambers 1973,
Whaley 1978).  However, the MI formula also makes a prediction that may seem somewhat
surprising given the discussions of compound processing in the literature:  morpheme
frequency (represented in the denominator) should have a negative effect.  That is, all else
being equal, experimental participants should have greater difficulty recalling a compound
word if its components are of high frequency relative to the frequency of the whole word,
since this will lower the compound's MI value.

On the face of it, the effects of morpheme frequency in the experimental literature do not
seem to conform well with these predictions.  While all researchers find positive word
frequency effects in the lexical access of compounds, some also find positive morpheme
frequency effects (e.g. Taft and Forster 1976, Andrews 1986, using written English), while
others find no morpheme frequency effects under apparently similar conditions (e.g. van
Jaarsveld and Rattink 1988, using written Dutch).  As far as we are aware, no study on
European languages has reported the sorts of negative morpheme frequency effects we expect
(cf. van Jaarsveld and Rattink 1988, who found negative morpheme frequency effects for
nonwords in one experiment, namely higher frequencies of first morphemes led to slower
"nonword" responses).
 In research on Mandarin Chinese, however, the results match the model rather better.
Chen (1993), Tsai (1994), Lü (1996), and Peng, Liu and Wang (1999) all found negative
morpheme frequency effects in lexical decision tasks with visually presented Chinese
compounds.  Notably, such effects have only been found in semantically opaque compounds;
even with written Chinese, semantically transparent compounds tend to show positive
morpheme frequency effects.  In the terminology of the overlapping listeme approach, this
suggests that pure cross-morphemic predictability (independent of other factors) has its
greatest effect on compounds that are already towards the "listeme" end of the continuum.
Lü (1996) is particularly interesting for the purposes of this paper, since one of her theoretical
variables was the number of word types in which a morpheme occurs (similar to the notion of
morphological family size studied by Schreuder and Baayen 1997), and this is closely related
to cross-morphemic predictability.  Both morphemes with larger family sizes and
morphemes of higher lexical frequency increased reaction times for the compounds that
contained them (unfortunately Lü did not control for semantic transparency).  However,
Liang (1992) and Lee (1995) found no effect of morpheme frequency for visually presented
opaque compounds (along with the usual positive morpheme frequency effects for
transparent compounds).  Finally, in the literature's sole non-primed lexical decision task
using auditorily presented Mandarin compounds, Zhou and Marslen-Wilson (1994) found no
morpheme frequency effects even for semantically transparent compounds.

To better understand this variation across languages and conditions and its relation to the
overlapping listeme approach, we decided first to make the predictions of the approach
precise by building an implementation on a computer (section 2).  We then compared the
behavior of this model with the results of an experiment examining the lexical access of
spoken Mandarin Chinese compounds (section 3).  We chose to look at spoken Chinese both
because it has been sorely neglected in the psycholinguistic literature, and because, as we saw
above, it poses especially complex problems for models of morphological processing.

2. Experiment 1:  Connectionist modeling

To demonstrate how cross-morphemic predictability is expected to play a role in lexical
access assuming the overlapping listeme approach, we built a simple connectionist model that
does not place words and morphemes into separate levels.  The model takes an entire
compound word as input and gives the same compound word as output.  Accuracy on this
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simple task is thus a measure of how well the network "remembers" the whole word.
Such a network is expected to show MI effects for purely geometrical reasons.

Consider a toy lexicon with only one token each of three two-morpheme words:  AB, AC
and DE.  Since the morpheme A is twice as common in the corpus as either morpheme in
DE, the MI value for AB and AC will be lower than that for DE (specifically, MI(AB) =
MI(AC) = 1.85, MI(DE) = 2.85).  Now suppose that we present these compounds to a two-
layer feedforward connectionist network that we train to produce an output identical to the
input (e.g. inputting AB should produce AB as output), a so-called autoassociation task.
Each node in the output receives information from both morpheme nodes in the input, in the
sense that its activation is a function of the sum of the products of the weights of the
connections with the activations of the connected input nodes.  Since DE has a higher MI
value than AB or AC, the nodes in the input representation for DE will cooccur more
consistently than the morphemes in the other two compounds.  That is, for the compound
DE, there will be two consistent sources to tell the second output node that it's supposed to be
E, namely both the input node for D and the input node for E.  By contrast, for the other two
compounds AB and AC, the only reliable source of information about the second output node
is the second input node; the A node in the input is not reliable, since it cooccurs with both B
and C.  If accuracy of the output depends on the number of sources of information there are
for each output node (which is true of the learning algorithm we use in our model), then the
network must be more accurate for DE than for AB or AC.

2.1 Participants

A two-layer feedforward network was built using the tlearn software (Plunkett and
Elman 1997), running in Windows 95.  The network had 16 input nodes and 16 output nodes
(since each vector represented a "compound" with two 8-node "morphemes", as described
below).  Thus each input node connected with every output node, but nodes did not connect
with each other within layers.  The learning algorithm in tlearn is back-propagation
(Rumelhart, Hinton, and Williams 1986), which means that with just two layers, the network
was essentially identical to a perceptron (Rosenblatt 1958).  Back-propagation works by
initializing the weights of the connections to random values, comparing the model's output
with the desired output, and adjusting the weights so that the error is reduced.  The initial
randomization of weights allows one to test separate experimental "participants", each one
with identical architecture but a different initial set of weights.  Thus we created thirty
participants by allowing tlearn to choose thirty different seed values for its randomization
algorithm, with weights restricted to the range ±0.5.

2.2 Materials

The training set was built from a set of eight "morphemes" (A, B, ..., H) coded as 8-node
vectors, where only one node was activated (e.g. A=[10000000], B=[01000000]).  This
localist representation meant that the model would not be confused by "homophones" (i.e.
where two distinct morphemes shared active nodes).  The morphemes were combined into
64 compound "words" represented by 16-node vectors (e.g. AB=[1000000001000000]).
Since calculating MI values involves the division of word frequency by morpheme
frequencies, there are two ways that a higher MI value can arise (i.e. with relatively high
word frequency or with relatively low morpheme frequency), and likewise two ways to
derive a lower MI value.  Hence we wanted to examine the ability of the network to learn
four types of words:  H:H/M (high MI, high word frequency, mid morpheme frequency),
H:M/L (high MI, mid word frequency, low morpheme frequency), L:L/M (low MI, low
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word frequency, mid morpheme frequency), and L:M/H (low MI, mid word frequency, high
morpheme frequency).  Words of each of these types (respectively labeled AB, CD, EF, GH)
were given their appropriate properties by carefully adjusting word and morpheme
frequencies of the 64 compounds, creating a total of 10033 different word tokens.  Table 1
gives the number of word tokens, the number of tokens of these words' component
morphemes, and the resulting MI values for the four key words AB, CD, EF, and GH.

[INSERT TABLE 1]

Note that the MI values for EF and GH are quite negative, which means that the
component morphemes of these words are essentially in complementary distribution,
appearing together less often than would be expected by chance.  Further examination of
this table shows that while we were careful to make the MI values for AB and CD very close,
and likewise for EF and GH, high versus mid versus low word and morpheme frequency
must be understood here solely in relative terms.

2.3 Procedure

The 30 network participants were trained in an autoassociation task (that is, inputs and
outputs were identical).  The 10033 tokens were presented to each participant in a different
random order.  Thus higher-frequency words were presented more often than lower-
frequency words, so the back-propagation procedure guaranteed that their accuracy would be
higher.  We set the two crucial back-propagation parameters to values typical in the
literature (learning rate = 0.3, momentum = 0.9).  Since these parameters were the same
across all tokens and participants, they cannot be responsible for our results (changing them
would merely speed up or slow down learning overall).

After training was complete, we froze the final weights for each participant and then
tested the four target words AB, CD, EF, and GH.  Actual output vectors were compared
with the desired vectors, and for each word and each participant an error value was calculated
simply by summing the absolute values of the differences between the node activations of the
actual and desired output vectors.  (We decided that more commonly used but more complex
error formulas, such as Euclidean distance, were not necessary for our purposes.)

2.4 Results

The mean error values are given in Table 2.

[INSERT TABLE 2]

We performed a one-way ANOVA with repeated measures (by participant) on the error
values of the four words.  There was an extremely significant effect of compound type
across the four word types (F(3,87)=1304, p<.001).  (The fact that this result was so
significant is not itself significant, as it presumably results from the relatively low variability
produced by the way we generated our participants.)  Scheffé's test showed that every word
had a mean error value significantly different from every other at the 0.05 level.  In
particular, higher word frequency resulted in lower error values when morpheme frequency
was controlled (H:H/M vs. L:L/M), and higher morpheme frequency increased error values
when word frequency was controlled (L:M/H vs. H:M/L).  Together this meant that a higher
MI resulted in lower error values, as predicted.
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2.5 Discussion

The results confirm that MI does in fact play an important role in this kind of network.
In particular, the effect of morpheme frequency was negative, where higher-frequency
morphemes made the words they composed harder to process rather than easier, contrary to
models where compounds are thought to be accessed via one or both of the morphemes (e.g.
Taft and Forster 1976).  We consider our results with this model important, since
psycholinguists often seem to assume that if morphemes and words show separate effects,
there must be separate levels for morphemes and words.  Our model provides an existence
proof that this isn't necessarily the case.

Of course, the effects of word frequency and morpheme frequency in the experimental
literature do not seem to be as simple as predicted by our simple model.  In addition to the
variation across studies noted in the introduction, real morpheme frequency effects in
compound processing are sometimes found to be restricted to just one position, usually the
first (e.g. Taft and Forster 1976 for written English).  This aspect is entirely ignored in our
model; since all inputs nodes connect to all output nodes, the model doesn't even know the
order of the sixteen nodes in a vector, much less the order of the two "morphemes".  The
model is also not designed to handle priming effects that are increasingly being reported in
the literature on compound processing (see e.g. Sandra 1990, Zwitserlood 1994 for Dutch;
Zhou and Marslen-Wilson 1995, Liu and Peng 1997 for spoken and written Mandarin
respectively; Jarema, Busson, Nikolova, Tsapkini, and Libben 1999 for French and
Bulgarian).

Since the main purpose of the model is to demonstrate how MI effects emerge naturally
from an overlapping listeme approach, a much more serious concern is the decidedly mixed
evidence for negative morpheme frequency effects in the experimental literature.  In
particular, our connectionist model is completely incapable of producing positive morpheme
frequency effects, and to the extent that such effects have been reliably replicated, we gladly
acknowledge the reasonable and widely accepted hypothesis that readers and listeners
sometimes access compounds via one or both component morphemes.  While our simple
network cannot handle this, positive morpheme frequency effects are not inconsistent with
the overlapping listeme approach in general, since it assumes that listemes can be of any size,
including morpheme-sized, and that related listemes are linked; here the linked listemes
would be compounds and the morphemes that compose them.  It is an interesting open
question whether a single computational model can be built to exhibit both negative and
positive effects of morpheme frequency under different conditions.

However, our simple network model may help provide a framework for understanding
variations between negative and neutral morpheme frequency effects.  First, semantic
transparency is predicted to be an inhibitory factor on reaction times, since morphemes in
semantically transparent compounds tend to be less mutually predictable than in semantically
opaque compounds, for reasons discussed earlier.  This is precisely what has been found by
some studies using written Chinese compounds (e.g. Liang 1992, Lee 1995, and Su 1998).
Moreover, Tsay, Myers, and Chen (1999) show that children acquiring Taiwan Southern Min
(related to and morphologically quite similar to Mandarin Chinese) split up semantically
transparent compounds into separate prosodic constituents more often than semantically
opaque ones.  However it should be mentioned that other studies find that transparent
compounds are recognized faster (e.g. Tsai 1994, Lü 1996) or find no difference in processing
speed between transparent and opaque compounds (Chen 1993).

Turning to differences in results across languages and modes of stimulus presentation,
recall that the morphemes in our model were specifically designed to have completely
distinct vectors.  In real languages, morphemes are often similar to each other
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phonologically, orthographically, or both.  From the perspective of the model, a set of
similar morphemes will tend to behave as if they are all varying tokens of a single morpheme.
Thus the more such similar morphemes there are in a given language, the less the variation in
true morpheme frequency will be noticeable to the model, and therefore the less of an MI
effect there will be.  Conversely, linguistic systems in which morphemes are very distinct in
form should show stronger MI effects, including negative effects of morpheme frequency.

Now one way in which Mandarin differs from European languages (in addition to those
listed in the introduction) is that its orthography clearly disambiguates morphemes, which can
differ from each other in form to a much greater extent than morphemes written with a mere
26 or so letters.  Following the above argument, written Chinese compounds should
therefore tend to show stronger MI effects than compounds written in an alphabetic
orthography.  This means that morpheme frequency effects should be more strongly
negative for written Chinese compounds than for compounds (written or spoken) in
languages like English.  This may help explain why negative morpheme frequency effects
have been found in Chinese but not in other languages.  However, as noted earlier, spoken
Mandarin also has a high degree of homophony, even among compounds, and so we expect
that spoken Chinese compounds should tend not to show strong MI effects.  The fact that
Zhou and Marslen-Wilson (1994) found no morpheme frequency effect in auditorily
presented semantically transparent compounds in Mandarin may thus result from these sorts
of compounds having particularly low overall MI values.

3. Experiment 2:  Auditory lexical decision task with Mandarin speakers

We decided to test the strength of our model by applying it in a domain where we expect
MI effects to be weakest, namely in auditorily presented semantically transparent compounds
in Mandarin.  Given the problem of rampant homophony among Chinese morphemes, we
ruled out the possibility that we would find any positive morpheme frequency effects; as
argued in the introduction, a processing strategy whereby compounds must be accessed via
the component morphemes would be extremely counterproductive for spoken Mandarin.
The question was whether the null results of Zhou and Marslen-Wilson (1994) were due to
the absence of any morphological processing of compounds at all, or simply to their missing
a real but small negative effect of morpheme frequency.  Therefore we carried out an
experiment similar to those conducted by Zhou and Marslen-Wilson (1994), but using more
participants and a greater morpheme frequency range.  Both of these changes were designed
to bring small effects, if any existed, up to statistical significance.

3.1 Participants

Participants were native speakers of Mandarin (students at National Chung Cheng
University in central Taiwan), paid for their participation.  Data from seven of them ended
up being rejected for analysis (four had an error rate of 25% or above in the experiment, two
had technical problems with the headphones, and one turned out to be left-handed;
handedness was relevant since the right hand was used to press the "real word" button on the
button box).  This left 54 participants whose data we analyzed.
  
3.2 Materials

Items were chosen to fall into the same four categories used in the connectionist model
(H:H/M, H:M/L, L:L/M, and L:M/H); basic data on these categories are given in Table 3, and
lists of all of our words with their statistical information are given in the Appendix.
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[INSERT TABLE 3]

Zhou and Marslen-Wilson (1994) did not pretest their compounds for semantic
transparency, so for our experiment, compounds in each of the four categories were pretested
for semantic transparency by first choosing a set of 194 apparently transparent compounds
and a set of 194 apparently semantically opaque compounds (borrowed from Lee 1995) and
presenting them in a randomly ordered list to 12 native speakers of Mandarin to judge for
semantic transparency (i.e. relatedness of word meaning to character meaning) on a five-point
scale (1 = most transparent).  We then chose the 20 items in each category with the best
ratings for semantic transparency to use in the experiment.  There was no significant
difference in the semantic transparency scores across the four categories (F(3,76)=0.152, p
> .05).

Frequency counts came from a large corpus of written Mandarin (the Academia Sinica
Balanced Corpus, based mainly on texts from newspapers in Taiwan; see Chen, Huang,
Chang, and Hsu 1996).  The version of the corpus that we used was the one published as
CKIP (1993), which has about 9.53 million word tokens (where words include compounds
and other polymorphemic units analyzed as nonphrasal by the makers of the corpus) and
about 14.46 million character tokens.  By contrast, the corpus used by Zhou and Marslen-
Wilson (1994) contained only 1.31 million word tokens and 1.81 character tokens.  We
defined high word frequency as over 100 tokens in our corpus (10.5 per million characters),
mid word frequency as 20-60 tokens (2.1-6.3 per million), and low word frequency as fewer
than 6 tokens (0.6 per million).  Following Zhou and Marslen-Wilson (1994), we simply
equated morpheme frequency with character frequency.  Chinese characters do not correlate
perfectly with morphemes, since there a small number of polysyllabic morphemes, usually
foreign borrowings, that are written with two or more characters, and some characters have
different meanings and/or pronunciations in different contexts.  However, such cases are
relatively uncommon, and since our materials contained only disyllabic semantically
transparent compounds, these caveats are even less relevant.  High morpheme frequency
was defined as over 10000 character tokens in our corpus (692 per million characters), mid
morpheme frequency as 2000-8000 tokens (138-553 per million), and low morpheme
frequency as fewer than 1000 tokens (69 per million).

Perhaps due to our larger corpus, our morpheme frequency range was much wider than
that used by Zhou and Marslen-Wilson (1994).  Word frequency ranges were comparable; in
their materials, mean high word frequency was around 95 tokens (72.5 per million words)
and mean low word frequency was around 5 tokens (3.8 per million), different by a factor of
19, while for us, mean high word frequency was around 95 tokens (9.97 per million) and
mean low word frequency was around 5 tokens (0.52 per million), also different by a factor
of 19.  However, more importantly for the theoretical issues in this paper, for Zhou and
Marslen-Wilson (1994) mean high morpheme frequency was around 1400 tokens (773 per
million characters) and mean low morpheme frequency around 200 tokens (110 per million),
different by a factor of 7, whereas for us, mean high morpheme frequency was around 20000
tokens (1383 per million characters) and mean low morpheme frequency around 500 tokens
(34.58 per million), different by a factor of 40.

As in the connectionist experiment, the materials were designed with MI in mind.  In
fact, as can be seen from Table 3, the MI values for the L:L/M and L:M/H categories were
well below the cutoff value of 2.5 used to define wordhood in the Sproat and Shih (1990)
study mentioned in the introduction, while the MI values for the H:H/M and H:M/L
categories were well above.  We also were careful to control the word and morpheme
frequencies used to derive these MI values.  Thus while there was of course a significant
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difference in word frequency across all four categories (F(3,76)=15.01, p<.001), there was no
significant difference in word frequency across the H:M/L and L:M/H categories (both by
Scheffé's test at an alpha level of 0.05, and a two-tailed unpaired t-test, t(38)=-1.53, p=.13).
There was also an overall significant difference in first morpheme frequency (F(3,76)=51.28,
p<.001) and in second morpheme frequency (F(3,76)=40.73, p<.001), but no significant
differences across the H:H/M and L:L/M categories (both by Scheffé's tests at an alpha level
of 0.05, and by two-tailed unpaired t-tests:  t(38)=0.37, p=.74, and t(38)=0.33, p=.75, for
first and second morpheme frequency respectively).

Since our materials were presented auditorily, another important factor was syllable
frequency.  Zhou and Marslen-Wilson (1994) found that higher syllable frequency slowed
reaction times in a lexical decision task (where syllable frequency was calculated by adding
the frequencies of all homophonous morphemes; syllables with different lexical tones were
not considered homophonous).  They plausibly suggest that this negative syllable frequency
effect may be due to competition between similar-sounding words during the decision-
making process, an explanation supported by their finding that the syllable-frequency effect
only showed up in the first position, consistent with left-to-right access of phonological forms.
Unfortunately, since syllable frequency normally correlates with morpheme frequency, we
faced a possible confound which could give misleading support to our hypothesis.  That is,
higher morpheme frequency could cause longer reaction times merely because the associated
syllables are also of higher frequency.

Thus we were very careful to control the syllable frequency, especially in the first
position.  As shown in Table 3, the frequencies of the syllables in first position were kept
within 10 and 50 thousand tokens (692-3458 per million characters, which are always
monosyllabic).  The frequencies of the syllables in second position were harder to control
given all the other constraints on our materials, and ranged between a low of 396 tokens and a
high of 279354 tokens (27-19322 per million characters).

As can be seen from Table 3, the mean syllable frequencies do not pattern with the mean
morpheme frequencies; even in the L:M/H category (with high morpheme frequency), the
first syllable frequency is merely 1.1 times higher than the mean first syllable frequency in
the H:M/L category (with low morpheme frequency).  Moreover, across all four categories
the mean syllable frequencies are not significantly different, either in first position
(F(3,76)=1.74, p >.05) or in second position (F(3,76)=1.59, p >.05).  In particular, there is
absolutely no significant difference in first syllable frequency in the categories H:M/L and
L:M/H, which vary morpheme frequency while keeping word frequency constant (two-tailed
unpaired t-test assuming equal variances:  t(38)=-0.82, p=.42).  By contrast, morpheme
frequency is highly significant across the four categories, in both first and second position, as
noted above.  In particular, mean first morpheme frequencies for the H:M/L and L:M/H
categories differ by a factor of over 45 (t(38)=-8.45, p<.001).  Nevertheless, across all 80
real words, syllable frequencies were significantly correlated with morpheme frequencies
(first position: r(80)=0.33, p<.05; second position: r(80)=0.27, p<.05).

In addition to our controls, we do not think that syllable frequency poses a serious
problem for our purposes, for the following reason.  Since syllable frequency is defined as
the sum of the frequencies of homophonous morphemes, controlling syllable frequency while
varying morpheme frequency actually works against our hypothesis.  Specifically, in the
H:M/L category, first morpheme frequency is much lower than first syllable frequency (30
per million vs. 1896 per million), which suggests that the morphemes should tend to have
either many competing homophones or at least a few high-frequency ones, whereas in the
L:M/H category, first morpheme frequency is quite a bit closer to first syllable frequency
(1373 per million vs. 2099 per million), which suggests that the morphemes should tend to
have fewer homophones or at least lower-frequency ones.  These expectations about the
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number and frequency of homophonous competitors are in fact true.  The mean number of
homophones of the first syllable in H:M/L compounds is 10.15, with the target morphemes
showing a mean frequency ranking of 5.5 (where 1 would indicate that it had the highest
frequency of all competing homophones), whereas the mean number of homophones of the
first syllable of L:M/H compounds is 6.75, with the target morphemes showing a mean
frequency ranking of 1.2.  Both of these differences were significant (since F-tests showed
that the variances were also different, we used an unpaired heteroscedastic t-test that does not
require equal variances; number of homophones: t(33)=2.13, p<.05, frequency ranking:
t(20)=6.24, p<.001).  In short, the morphemes in the H:M/L category both have more
homophonous competitors than those in the L:M/H category, and the competitors tend to be
of higher frequency.  This means that if competition between homophones slows down
response times and increases errors, as Zhou and Marslen-Wilson (1994) have suggested in
regard to their own results, we expect that the words in the H:M/L category should be harder
to process than those in the L:M/H category.  This is precisely the opposite of what cross-
morphemic predictability would lead one to expect, and therefore our hypothesis is sharply
distinguishable from this alternative view.

Because the task was a lexical decision task, there were also 80 nonwords.  Each of
these was created by taking a real semantically transparent compound word (not used in the
experiment) and changing the tone of its second syllable.  For example, the real word
kong1ping2 "empty bottle", which has tone 1 (a high level tone) on the first syllable and tone
2 (a rising tone) on the second, was turned into a nonword by changing it to kong1ping4, with
tone 4 (a falling tone) on the second syllable.  This procedure made the task maximally
difficult, since participants had to pay close attention until the end of the word before making
a decision.  The benefit of this procedure is that the participants would quickly learn that
even the nonwords were very similar to real words and thus perhaps adopt a strategy
designed to minimize interference from real-word neighbors during lexical access of the real
words as well.  We hoped that we would thereby further reduce the potential problem of the
syllable-frequency/morpheme-frequency confound.  This is another way that our study is
not a direct replication of Zhou and Marslen-Wilson (1994), since while they do not describe
how their nonwords were created, it is likely that they did not follow this procedure given
their interest in the role of phonological processing.

Finally, these materials (all two syllables long) were recorded by a female native speaker
of Mandarin (not the second author) and digitized at a sampling rate of 10 kHz.  Due to
limitations in our equipment, the stimuli were recorded at a relatively fast speaking rate
(approximately 200 msec for each disyllable) and were somewhat noisy, but participants did
not report any problems with comprehension; their error rates were also not much larger than
are typically found in experiments of this kind (see Results).

3.3 Procedure

We used an auditory lexical decision task.  Participants were presented with stimuli
over headphones in random order (different for each participant) and had to respond to each
as real or not by pressing appropriate buttons on a button box as quickly and accurately as
possible.  The labels on the buttons read zhenci and feici, respectively, where zhen means
"real", fei means "not", and ci refers to a small linguistic unit larger than one character (i.e.
what a linguist would consider a word, idiom, or phrase).

Three participants were run simultaneously on separate IBM-compatible computers
(Pentium I running a C-based program in DOS).  A trial consisted of auditory presentation
over headphones of a stimulus, followed by the participant's response (if any); if there was no
response within 3 seconds, the program continued to the next trial.  Trials were separated by
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intervals of 1.5 seconds.  Before the main experiment, 16 trials were given for practice.
Both the number of errors (judging real words as nonwords or taking longer than 3 seconds to
respond) and response times (RTs measured from the onset of the stimulus to the pressing of
a button) were recorded.  RTs for nonwords and for erroneous responses to real words were
not analyzed.

3.4 Results

The mean number of errors and response times (RT) from the four categories of words
are given in Table 4.  As can be seen, there was no speed-accuracy trade-off (which would
indicate that participants became more accurate as they responded more slowly, thus hiding
any interesting processing).

[INSERT TABLE 4]

To get a sense of the overall effect of MI, one-way ANOVAs with repeated measures
were conducted.  Unsurprisingly, there were highly significant effects across the four
compound types, both for RT (by participant, F(3,212)=10.58, p<.001; by item, F(3,76)=6.29,
p<.001) and for number of errors (by participant, F(3,212)=63.44, p<.001; by item,
F(3,76)=9.41, p<.001).  However, the more interesting question was whether MI affected
speed and accuracy in the expected way.  Specifically, we wanted to know if word
frequency had a positive effect when morpheme frequency was controlled while morpheme
frequency had a negative effect when word frequency was controlled.

Thus we performed separate analyses on H:H/M versus L:L/M, and on H:M/L versus
L:M/H.  We begin with analyses for H:H/M and L:L/M, where word frequency was varied
while morpheme frequency was controlled.  With RT analyzed by participant, an F-test
found no significant difference in variance, and so we conducted a standard two-tailed paired
t-test (in this case equivalent to a one-way ANOVA with repeated measures); the effect was
highly significant (t(53)=-7.60, p<.001).  For RT analyzed by item, an F-test also found no
difference in variance, so again we conducted a standard two-tailed paired t-test, and again
the effect was significant (t(19)=-3.28, p<.01).  In an analysis of the number of errors, F-
tests found significant differences in variance, both by participants (F(53)=0.23, p<.001) and
by items (F(19)=0.25, p<.01), with greater variance for the lower frequency words.
Although the paired t-test is relatively robust when the assumption of equal variance is
violated, we decided to perform a weaker variant of the t-test that does not require this
assumption.  This two-tailed, unpaired heteroscedastic t-test showed that the effect of
number of errors was significant both by participant (t(76)=-10.53, p<.001) and by item
(t(28)=-3.81, p<.001).

Now we turn to the results for H:M/L and L:M/H, where morpheme frequency was
varied while word frequency was controlled.  With RT analyzed by participant, an F-test
found no difference in variance, and so we conducted a standard two-tailed paired t-test; the
effect was highly significant (t(53)=-4.56, p<.001).  For RT analyzed by item, an F-test also
found no difference in variance, so we conducted a standard two-tailed paired t-test; however,
this time the effect just missed significance at the .05 level (t(19)=-2.04, p=.056).  In an
analysis of the number of errors, F-tests found significant differences in variance, both by
participants (F(53)=0.45, p<.01) and by items (F(19)=0.14, p<.01); greater variance was
found with the higher frequency morphemes.  Again we performed a two-tailed, unpaired
heteroscedastic t-test, which showed that the effect of number of errors was significant both
by participant (t(92)=-7.04, p<.001) and by item (t(24)=-3.02, p<.01).

In summary, when morpheme frequency was controlled (H:H/M vs. L:L/M), a higher
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word frequency resulted in faster reaction times, a lower number of errors, and less variance
in the number of errors, whereas when word frequency was controlled (L:M/H vs. H:M/L),
higher morpheme frequency slowed reaction times, increased the number of errors, and
increased variance in the number of errors.  Together these results support our predictions of
positive word frequency effects and negative morpheme frequency effects.

Since first syllable frequency and first morpheme frequency correlate in our materials,
however, we decided to perform more stringent tests on our results.  First we calculated
Pearson's correlation coefficient for all syllable frequencies and response measures (RT and
number of errors).  For second-position syllables, the correlations were nonexistent (r(80) =
0.09 for RT, r(80) = -0.05 for errors), consistent with the finding of Zhou and Marslen-Wilson
(1994) that second-syllable frequency plays no role in lexical access for spoken compound
recognition.  For first-position syllables, however, the correlations went in the expected
directions and were statistically significant (RT: r(80) = 0.25, p<.05; errors: r(80) = 0.29,
p<.05).  For further analysis of the syllable frequency problem we focused on a comparison
between H:M/L and L:M/H, which have the same mean word frequencies but different
morpheme frequencies.  Partialling out first morpheme frequency, the resulting correlations
with first syllable frequency were r(40) = 0.27 for RT (nonsignificant, p>.05) and r(40) = 0.31
for errors (significant, p<.05).  As a final test, we partialled out first syllable frequency in
the comparison between H:M/L and L:M/H and examined the remaining correlations with
first morpheme frequency; they were r(40) = 0.00 for RT (nonsignificant, p>.05) and r(40) =
0.12 for errors (nonsignificant, p>.05).

In spite of these (non)correlation patterns, recall that syllable frequencies in our
materials were not significantly different between the H:M/H and L:M/L categories (i.e. the
p-value was quite high by the relatively strong unpaired t-test); it is therefore not feasible to
ascribe differences in responses to them solely to syllable frequency.  Moreover, the above
correlations were necessarily done by item, but as just noted the by-item analysis of RT
between these two categories did not quite reach significance.  By contrast, there was a
highly significant difference in RT when analyzed by participant; in this analysis, we
averaged responses to the different items in each class together, and so small variations in
syllable frequency could not possibly have had any effect.  There are also technical
difficulties with the interpretation of the significance values associated with the correlations;
Pearson's correlation coefficient assumes normal distributions for the variables, but lexical
frequencies in fact do not have normal distributions because more items will be of lower
frequency than of higher frequency in a random sample of types, thus seriously skewing the
histogram to the right.  Spearman's ranked correlation coefficient, which does not require
normal distributions (but is also weaker than Pearson's), showed no significant correlations
between first syllable frequency and RT, both for all items (rS(80)=0.26, p>.05) and for items
just in the H:M/H and L:M/L categories (rS(40)=0.31, p>.05); correlations with number of
errors could not be fruitfully examined due to the large proportion of tied rankings.

In summary, then, even after detailed post hoc analyses of our results, we find no reason
to reject the conclusion that the negative morpheme-frequency effect is real.  Nevertheless,
in spite of our controls it appears that we have also uncovered the additional presence of a
negative syllable-frequency effect.

3.5 Discussion

The overall results were quite compatible to the predictions of the model:  MI had a
positive effect on accuracy and response speed, because word frequency effects were positive
and morpheme frequency effects were negative.  In particular, we believe that our negative
morpheme frequency effect is real, not an artifact of competition with phonologically similar
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words.  As pointed out in the Materials section, controlling syllable frequency while varying
morpheme frequency meant that words in the H:M/L category had a greater number of
phonological competitors than those in the L:M/H category.  The fact that L:M/H words
were nevertheless harder to process shows that any negative syllable frequency effect in our
results cannot be due to competition.  At best, one could argue that our results were due to
cross-syllabic predictability.  We don't think that even this is correct, however, given the
arguments noted in the Results section.

There are also theoretical reasons to doubt that syllable frequency was the major factor
in our experiment.  By definition a morpheme is a linking between form and meaning, and
the processes that are activated in the lexical decision task are likely to make reference to
both kinds of representation.  Hence a priori a morpheme is more cognitively active than a
phonological representation alone.  Moreover, it has repeatedly been found that semantic
representations are more active than purely phonological ones; while facilitory semantic
priming is a well-established and robust phenomenon, phonological priming may have either
facilitory or inhibitory effects, depending on the interstimulus interval and the task.
Specifically in the domain of morphological processing, Marslen-Wilson, Tyler, Waksler, and
Older (1994) found no cross-model priming with English words when prime and target were
merely related in form (either phonologically or "morphologically" in a historical sense), but
only when they were related via semantically transparent morphological structure.  Even in
the experiments of Zhou and Marslen-Wilson (1994) that ours is based on, syllable-frequency
effects were quite difficult to find.  In one of their experiments, syllable-frequency effects
were only found in nonwords, and in another, they were only found in real words when both
word and morpheme frequency were held constant.  Finally, there is independent evidence
for our assumptions that morphemes are accessed (as potential listemes) at some point in the
processing of spoken Chinese compounds, and that syllables as purely phonological units are
less important.  In a set of lexical decision experiments using spoken Chinese compounds as
primes and targets, Zhou and Marslen-Wilson (1995) found evidence for morphological
priming that behaved distinctly from mere form priming or semantic priming.  With shorter
delays between prime and target, responses were facilitated by primes that shared an identical
morpheme with the target, whereas responses were inhibited when the first morphemes of
prime and target were homophonous or written with the same polysemous character.  With
longer delays, homophone and character priming effects disappeared, while morpheme
priming remained, persisting even longer than word-level semantic priming.  Thus it appears
that even with spoken Chinese compounds, morphemes are accessed at some point, though if
the overlapping listeme approach is correct not as a necessary first step in word access.

We therefore conclude that the effects of cross-morphemic predictability can be found
even in the lexical access of auditorily presented Mandarin compounds, a situation where our
model predicts the effects to be small.  We have already given several possible reasons why
Zhou and Marslen-Wilson (1994) were not able to see these effects, most notably the facts
that the frequency range of our materials was much wider than theirs and that the nonwords
in our experiment were designed to be as similar as possible to real words, forcing
participants to adopt a strategy that minimized the interference of phonological neighbors.
The relatively long RTs that we found (about 300 msec longer than those found by Zhou and
Marslen-Wilson 1994) may have been a side-effect of the challenge posed by our nonwords.
Given the overall long RTs (around 1 second), the size of the morpheme-frequency effect (i.e.
the difference in RTs between the H:M/L and L:M/H categories, around 50 msec) comes off
as somewhat small (a mere 5% or so of the average RT), which is what one would expect for
spoken Chinese compounds.
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4. General discussion

In this paper we have reported two findings relevant to the study of compound
processing.  On the theoretical side, we have demonstrated that a very simple connectionist
model can produce effects of cross-morphemic predictability.  If, as we have argued, cross-
morphemic predictability is expected to be an important factor in segmenting morphemes
from words, and words from phrases, our model provides a starting point for more
sophisticated analyses of this factor.  A model relying solely on cross-morphemic
predictability is of course inadequate to address all issues relating to compound processing;
for instance, as noted earlier, it can't deal with positive morpheme frequency effects or
priming.  Nevertheless, the model demonstrates that separate levels for words and
morphemes aren't necessary to get separate word and morpheme effects in lexical access.
Moreover, precisely the same logic leads one to conclude that negative syllable frequency
effects also do not necessarily require positing a separate level for syllables.  Our model gets
such effects automatically, simply by overlapping representations for words and morphemes
(and syllables) in an input layer, and then connecting these representations in a distributed
fashion to an identical output "decision" layer.

Our model thus stands in sharp contrast to that proposed by Zhou and Marslen-Wilson
(1994, 1995), who argue for a localist network with layered levels for words, morphemes and
syllables, with excitatory connections between levels (i.e. between words and morphemes,
and between morphemes and syllables) and inhibitory connections within each level.  We
feel that this model is unsatisfying, even given their own results.  First, since their model
was not implemented on a computer, its precise predictions are unclear.  On the one hand, it
might seem to predict positive morpheme frequency effects, since morphemes on one layer
are linked to compounds on another, so activation should spread along the excitatory
connections to speed up access for compounds with more highly activated (frequent)
morphemes.  On the other hand, it might predict negative morpheme frequency effects,
since a higher-frequency morpheme may appear in more than one word, and these words will
then compete with each other in the word layer (after all, this is how they account for their
negative syllable frequency effects).  On top of this, in their experiments they did not in fact
find morpheme frequency effects at all, a null result that doesn't provide support for their
multiple layers.

Second, they claim that syllable frequency has a negative effect by creating competition
between morphemes (i.e. homophonous morphemes inhibit each other).  However, despite
the presence of more homophones in the H:M/L condition in our experiment, these
compounds were actually easier to access than the items in the L:M/H condition.  This result
makes sense in our model, since given the way we designed our materials, the words with
more homophones (i.e. the H:M/L words) also had higher cross-morphemic predictability
(and to some extent higher cross-syllabic predictability as well) than the L:M/H words.

Turning to the empirical results of our paper, our major finding was that the predictions
of our model were in fact correct, at least for spoken Mandarin Chinese:  morpheme
frequency has a negative effect on accuracy and response speed.  Our results do not
contradict those of Zhou and Marslen-Wilson (1994) since null results by their nature cannot
be contradicted, and since differences in our materials and design are sufficient to explain
why we found them when they didn't.  Our results also replicated those of Chen (1993), Tsai
(1994), Lü (1996), and Peng, Liu and Wang (1999), all of whom found negative morpheme
frequency effects for Chinese compounds (when written and semantically opaque).  For us
the effect was quite small, just as expected given the high degree of homophony in spoken
Chinese, which should reduce the effect of cross-morphemic predictability.

If the overlapping listeme approach is on the right track, negative morpheme frequency
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effects should not be restricted to Chinese.  That they have not been reported for other
languages is perhaps due to the lack of anyone systematically looking for them.  By
comparing the differences between our studies and those of others (other than language), we
extract the following tips for those interested in seeking negative morpheme frequency effects.
First, the effects may be small, so it is important that the categories of low and high
frequency morphemes be as different as possible.  Second, one should control, or at least
understand, the role of syllable frequency (or perhaps more generally cohort size) in
obscuring cross-morphemic predictability effects.  This may even be important for reading
studies.  Third, and perhaps most important, the effect of cross-morphemic predictability
may only be clearly revealed with compounds whose MI values are higher than average.
This may help explain why morpheme frequency effects with transparent Chinese
compounds are positive when written (Chinese orthography makes such compounds
"obviously" decomposable) yet negative when spoken (homophony hides the morphological
constituents and so makes semantic transparency less relevant).

Beyond our specific model and experimental results, we would like to leave the reader
with more general thoughts inspired by the wordhood problem in Chinese.  If Chinese
speakers are right in their traditional assumption that words are fuzzy, and not the sole
parsing goal in language processing, could it be that the same is true for all languages to
varying extents?  Could it be that readers of word-segmented orthographies have also been
fooled by their writing systems, making them think that their mental lexicon is something like
the word-based dictionaries they are familiar with, just as Chinese readers are fooled into
thinking that their mental lexicon consists of nothing but characters?

One observation that may be of relevance is the finding that readers of English
compounds with ambiguous segmentation (e.g. clamprod, which can be read as clam + prod
or clamp + rod) generate both possible parses rather than following a uniform parsing
strategy (Libben, Derwing, and de Almeida 1999).  This is consistent with the overlapping
listeme approach, since it suggests that the parsing mechanism is quite accepting of
ambiguity, something we have claimed to be true for the deeper ambiguity between a
compound parsed as a whole and as parsed into morphemes.  Spoken language provides
even greater challenges to a parser, since not even word boundaries are provided
unambiguously in the signal (e.g. recognize speech sounds a lot like wreck a nice beach;
Shillcock 1990).  We suspect that our understanding of such problems would benefit from
rethinking the assumption that the ultimate targets of lexical access must always be words (or
always morphemes), and instead consider the possibility that the parser can be satisfied if it
finds any sensible listeme (morpheme, word and/or phrase).  At the very least, such a view
would help integrate research on compound processing and word processing into the more
general study of the processing of language in real time.
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Tables and figures

Figure 1.

Table 1 Frequency values for four word types in connectionist model experiment
Word type H:H/M H:M/L L:L/M L:M/H
Word label AB CD EF GH
Word frequency 1800 54 5 46

A B C D E F G HMorpheme
frequencies 2008 2013 296 306 2019 1998 5720 5706
MI value 3.16 3.58 -5.33 -5.14

Table 2 Results of connectionist model experiment
Word type H:H/M H:M/L L:L/M L:M/H
Mean error
value

0.0426 0.3519 2.4347 2.2076

Table 3 Mean frequencies for materials used in auditory lexical decision experiment*
Word type H:H/M H:M/L L:L/M L:M/H
Mean
transparency
score

1.35 1.34 1.31 1.29

Mean word
frequency

47.29 3.18 0.41 3.83

1st 2nd 1st 2nd 1st 2nd 1st 2ndMean
morpheme
frequencies

338 359 30 40 332 334 1373 1483

1st 2nd 1st 2nd 1st 2nd 1st 2ndMean syllable
frequencies 1552 1241 1896 2116 1748 2177 2099 4016
Mean cross-
morphemic MI
value

7.61 11.45 1.47 0.55

*To ease comparison with other studies, word frequencies are given as a proportion of the number of
word tokens out of 1,000,000 (actual corpus size: 9,529,233 words), while morpheme and syllable
frequencies are given as a proportion of the number of character tokens out of 1,000,000 (actual
corpus size: 14,457,534 characters), since morphemes are almost always monosyllabic and
coextensive with orthographic characters.  MI values were calculated using word frequencies as
proportion of the number of character tokens; see text for explanation.

Table 4 Results of auditory lexical decision experiment
Word type H:H/M H:M/L L:L/M L:M/H
Mean number of
errors

1.28 1.00 4.80 3.04

Mean RT (msec) 1011.46 993.56 1114.89 1042.17
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Appendix

Stimuli for experiment:  H:H/M items.*

Noun ST WF 1st MF 2nd MF 1st SF 2nd SF MI

fan4zui4 1.1 1114 6095 5113 16378 27370 9.01349

pi1pan4 1.1 140 4075 5230 24402 7182 6.56942

cai2zhi2 1.3 126 2617 7533 27108 41074 6.52989

tu2po4 1.5 1308 4470 6198 19680 8978 9.41482

fu4zhai4 1.4 112 7381 2041 43366 11566 6.74801

zhi2ban1 2 139 6660 5168 41074 11684 5.86756

xiu1hu4 1.1 148 7684 7500 11558 17069 5.21445

xun4lian4 1.1 1417 3592 3141 14052 4498 10.8264

ting2zhi2 1 122 6777 7660 12168 41074 5.0865

zhen1ce4 1 105 5071 2573 18943 11706 6.86227

kong4su4 1.7 120 3082 4240 12417 20171 7.05271

bo2ai4 1.1 134 2268 5625 13275 7709 7.24657

ping2ku1 1 1546 4561 3850 25872 39959 10.3139

jie1ji2 1.8 129 2941 7156 36494 11928 6.46952

tu2pian4 2 100 6106 4830 19680 7205 5.61536

fan4wei2 2 1383 3581 3532 16378 110102 10.6265

gi4bu3 1.3 128 2037 3229 35429 11743 8.13622

xiao1shou4 1.1 1624 7853 6381 20225 28241 8.87206

gou4mai3 1 1627 6092 5892 13677 5892 9.35607

yan2mi4 1.3 147 7066 3656 34245 7676 6.36226

*Nouns are written in the Pinyin romanization; digits represent tone categories.  ST = mean
semantic transparency score (1=most transparent, 5=least transparent), WF = word frequency
(number of tokens in a corpus of 9,529,233 words), MF = morpheme frequency (number of
tokens in a corpus of 14,457,534 characters), SF = syllable frequency (number of tokens in a
corpus of 14,457,534 characters), MI = cross-morphemic mutual information value,
estimated as log2((WF/14457534)/((MF1/14457534)*(MF2/14457534))).

For a list of the materials written in Chinese characters, please contact the first author.
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Stimuli for experiment:  H:M/L items.

Noun ST WF 1st MF 2nd MF 1st SF 2nd SF MI

ban4zou4 1.5 25 110 871 29188 1165 11.8813

bei4ke2 1.8 20 957 349 34765 396 9.75779

ru3yi4 1.9 20 518 585 16010 279354 9.89815

yin1yuan2 1.8 24 417 854 47267 117168 9.92828

zhuo2zhuang4 1.7 36 39 619 13245 6265 14.396

bao3lei3 1.7 20 294 621 24710 2310 10.6291

zi1run4 1.5 20 609 937 29344 943 8.98504

shu1chang4 1.2 20 609 937 29344 943 8.98504

xu1wei4 1.3 25 374 625 16047 3366 10.5946

jing4pei4 1.7 58 954 510 21382 8411 10.7511

fu4xie4 1.1 32 546 95 43377 26230 13.1227

xi2mie4 1 42 129 915 17873 972 12.3288

shui4mian2 1.1 49 830 251 33867 912 11.7315

fu3xiu3 1 29 398 77 33024 996 13.7399

fu3wei4 1.2 24 483 950 33024 150093 9.56262

gu3cang1 1 28 159 624 26426 1441 11.9944

gao1bing3 1 44 246 361 36426 4380 12.8064

chu2chuang1 1.3 46 86 822 15199 4509 13.1996

chu4mo1 1 20 936 535 26503 483 9.17349

zhan4dou3 1 24 58 121 21284 1516 15.5934
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Stimuli for experiment:  L:L/M items.

Noun ST WF 1st MF 2nd MF 1st SF 2nd SF MI

shi1san4 1.4 4 7928 2110 32327 2110 1.78955

shou3jiu4 1.1 3 3328 2351 25866 35004 2.47078

se4bi3 1 5 6966 2717 12414 16188 1.93333

xi1pan2 1.3 2 4920 6454 33681 11086 -0.1351

zhao1ling3 1.6 3 2935 5663 23066 6916 1.38379

chen2ji1 1.1 3 2146 6037 26054 126777 1.74323

xing1he2 2 3 4335 3006 15319 72139 1.73484

yin1pin2 1 5 4494 2310 47267 2941 2.79978

fei1dao1 1.3 4 3465 2330 17469 2349 2.84056

zhen4dang4 1.3 4 2533 3933 18606 28110 2.53727

bing4rong2 1 2 4868 7277 39597 19183 -0.2929

jiu3gian2 1 5 3348 4668 33234 58414 2.20957

ma3ti2 1.1 5 6476 3932 10444 36965 1.50531

chuan2huo4 1.4 5 6311 7474 15353 62946 0.61593

ye3hua1 1.2 5 2291 7458 39811 21610 2.08091

jian3ya1 1 4 5953 4814 22433 7250 1.0129

jue2ji4 1.5 5 5077 7045 32713 78222 1.0151

shang1bing1 1 3 5595 2669 27310 3484 1.53827

yan3suan4 2 5 7495 7318 12798 7457 0.3983

yan4fu2 1.8 3 5590 7057 19777 30272 0.13681
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Stimuli for experiment:  L:M/H items.

Noun ST WF 1st MF 2nd MF 1st SF 2nd SF MI

ben3neng2 1.2 28 26639 37889 26769 37889 -1.3181

ming2li4 1 21 25124 21623 49303 98237 -0.8394

yin1guo3 1.5 45 41178 15486 47267 15681 0.02891

shou1jian4 1.2 49 14120 11783 14120 91005 2.09016

kao3zheng4 1.6 32 10049 11413 10484 19777 2.01216

qiu2cai2 1 53 14712 12526 23229 27108 2.05589

fang4kai1 1.2 22 10893 32854 10893 32862 -0.1701

wu4ti3 1.9 21 11847 17092 38243 17092 0.58437

shi1jia1 1.6 59 12164 28555 32327 72195 1.29618

ju1ying2 1 36 11395 14537 23895 19959 1.65169

wu4nong2 1.2 35 20257 12696 38243 13974 0.97638

tong1shang1 1.3 24 20141 21206 20214 27310 -0.2998

gang3wan1 1.4 23 10324 15733 10661 16288 1.03366

wu2qing2 1.1 55 25155 22393 35890 24241 0.49736

fa1wen4 1.7 22 44844 18165 45314 48851 -1.3568

lu4fei4 1 28 24029 15385 44723 18908 0.13095

guo4shi2 1.3 48 32398 61604 32398 197865 -1.5241

ren4qing1 1 57 16948 11820 36330 25965 2.04044

zeng1gao1 1.1 50 10587 36004 21253 36426 0.9233

guan2shi4 1.4 22 14201 10155 45296 319612 1.14114
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