Memory and handedness effects on phonological judgments

James Myers Jane Tsay National Chung Cheng University, Taiwan Lngmyers@ccu.edu.tw, Lngtsay@ccu.edu.tw

> CIL18 Seoul, July 2008

Acknowledgments

- Research assistants
 - Yingshing Li, Rihe Cha, Peiying Chou, Yuru Peng, Yuguang Ko
- National Science Council of Taiwan

 NSC-93-2411-H-194-003, NSC 95-2411-H-194-005, NSC 96-2411-H-194-002

Overview

- Factors affecting phonological judgments
 - Phonotactic probability
 - Neighborhood density
- Attempts to distinguish them in Mandarin

 Interaction with working memory constraints
 - Interaction with brain lateralization
 - Handedness (and gender)
 - Visual field of stimulus display

Phonological judgments

- Non-speeded reports of a "sensation" – Acceptability: Naturalness and/or typicality
- Multidimensional, like all linguistic behavior Behavior = f("Grammar", "Processing")
- Major influences on phonological judgments Judgment = f(Phonotactics + Neighborhoods) Grammar? Processing?

Typicality?

4

- Challenge
 Naturalness?
 - Can these factors be distinguished?

Phonotactic probability

3

- Analytical and prelexical
 - More like lexicon-independent "grammar"
- One formal definition (e.g., Bailey & Hahn, 2001)
 Geometric mean of Prob(phone_i | phone_i)

Examples in Mandarin /nun³/ 093

.035	(Based on mornheme
.175	[character] type frequencies)
.231	(Tone conditioned off onset)
.346	
	.175 .231 .346

Neighborhood density

- Holistic and postlexical
 - More like exemplar-driven "analogy"
- One formal definition (e.g., Luce, 1986)
 Number of words differing from target by one phone (via deletion, insertion, or substitution)
- Examples in Mandarin

/nun ³ /	66	[low phon, low neigh]
/lan ¹ /	272	[low phon, high neigh]
/p ^h un²/	136	[high phon, low neigh]
/tan ² /	346	[high phon, high neigh]

Teasing them apart

- Effect of lexical status (Vitevitch & Luce, 1999)
 In naming tasks, phonotactics help nonwords, while neighbors hurt words
- Effect of task (Vitevitch & Luce, 1999)
 Neighbors hurt lexical decision for both types
- Effect of age (Newman & German, 2005) – Phonotactics consistent, neighbors vary
- Neurological correlates (Stockall et al., 2004)
 Sensitivity to phonotactics is left-lateralized and prior to lexical frequency and neighbors

Caveats

- Many ways to define both (Bailey & Hahn, 2001)
- They interact (Luce & Large, 2001)
- Judgment task effects:
 - Phon & Neigh both help (Bailey & Hahn, 2001)
 - Nonwords only vs. mixed (Shademan, 2007)
 - Measurement scale?
 - Binary vs. ordinal vs. continuous-valued...
- Cross-language differences...?
 - English (above) vs. Cantonese (Kirby & Yu, 2007) vs. Mandarin (Myers & Tsay, 2005)

Overall experimental logic

- Speakers asked to judge if "like Mandarin"
- · Lexical and nonlexical items mixed
- Factorial design, including covariates
- Nonlexical analysis:
 (Phonotactics + Neighbors) x Other factors
- Lexical analysis: (Phono + Neigh + Freq) x Other factors
- **Key:** Do phonotactics and neighbors show different kinds of interactions...?

Memory effects

- Overall logic
 - Do neighbors influence via lexical activation?
 - If so, strength of neighbor effect should depend on working memory capacity
 - Phonotactics shouldn't be affected
- Varying working memory capacity (e.g., Vos et al., 2001; Saucier & Elias, 2002)
 - Individual differences (recall accuracy test)
 - Experimental manipulation of memory load

12

Memory experiment: Summary

- · Lexical status
 - Nonlexical: No neighborhood effect
 - Lexical: Weak phonotactic effect
 Exaggerated by high proportion of real syllables...?
- Memory loading didn't do much
- Recall accuracy effects for lexical items
 - Better memory weakens both Phon & Neigh
 - Better memory strengthens frequency effect
 - Strategy: Just try to look up word in memory

Handedness effects

- Overall logic
 - Phonotactics uses special phonology processor?
 - Phonology is left-lateralized
 - Especially for right-handers (e.g., Knecht et al., 2000)
 - And males? (e.g., Shaywitz et al., 1995)
 - Left-handers (females?) have back-up in right...?
- Predictions
 - Phonotactics x Handedness x Gender:
 - Lefties and women will show strongest effect...?
 - Neighbors won't depend on these factors

Handedness experiment: Design

- Participants
 - Right- and left-handed men and women
 "Corrected" lefties excluded
- Judgment scale
 - Magnitude estimation (Stevens, 1956)
- Analysis Handedness x Gender x (Phon + Neigh + [Freq])
- Quick results...

21

- Nonlexical: Main effect of phonotactics only

22

- Lexical: Effects only of frequency...

Handedness experiment: Summary

- Phonotactics and neighbors...
 - Nothing! Maybe due to magnitude estimation?Recent criticism (Featherston, 2008)
- Handedness, gender, and frequency – Strongest frequency effect in righty women
- Possible interpretation
 - Strategy: Just look up word in memory
 - Word access involves left lateralization...
 - ... and men tend to be more left lateralized regardless of handedness...?

Visual field effects

- Overall logic
 - In righties, phonotactics is left-lateralized ...?
 - Stimuli in right visual field (RVF) goes quicker (more efficiently) to left hemisphere
 - Caveat: RVF & attention (e.g., Brysbaert et al., 1996)
- Predictions

27

29

- Stimuli in RVF will elicit stronger phonotactic effect than in LVF
- No influence on neighbor effect ...?

28

Visual field experiment: Design

- Participants
 - Natural righties only, both men and women
- Procedure
 - Fixate on center of screen
 - Syllables flashed left/right (130 ms, 30 ms mask)
 - Quick good/bad judgment (mean RT = 684 ms)
- Analysis
 - Vis. field x Gender x (Phon + Neigh + [Freq])
- Quick results...
 - Nonlexical: Only phonotactics, as usual...
 - Lexical: Frequency helps, and...

Visual field experiment: Summary

- · Lexical status effects dominate as usual
- Neighbor effect stronger in LVF
 - Neighbor effect in right hemisphere ...?
- Why?
 - Because it's holistic ...? (e.g. Koivisto & Laine, 1999)
 - ... but earliest MEG component sensitive to neighbors is left-lateralized (Stockall et al., 2004)

31

Conclusions*

- Phonotactic probability
 - Used prelexically (found with nonlexical items)
 - But not obligatory in lexical items ...? · Weaker effects, especially if memory is good
- Neighborhood density
 - Used postlexically (stronger in lexical items)
 - Right-lateralized ...?
- Judgments of lexical syllables in Mandarin - Depends mainly on frequency (memory)

32

- Left-lateralized (esp. right-handed women ...?)

*(highly tentative!)

References (1/2)

Bailey, T. M., & Hahn, U. (2001). Determinants of wordlikeness: Phonotactics or lexical neighborhoods? *JML*, 44, 569-591.
 Brysbaert, M. et al. (1996). The right visual field advantage and the optimal viewing position effect. *Neuropsychology*, 10 (3), 385-395.

Featherston, S. (2008). A standard scale of well-formedness. Paper presented at the International Conference on Linguistic Evidence 2008, Tübingen, Germany.
 Kirby, J., & Yu, A. (2007). Lexical and phonotactic effects on 1000 1000 1000

wordlikeness judgements in Cantonese. *ICPNS*, 26, 1389-1392. Knecht, S. et al. (2000). Handedness and hemispheric language dominance in healthy humans. Brain, 123, 2512-8

Koivisto, M., & Laine, M. (1999). Strategies of semantic categorization in the cerebral hemispheres. Brain & Language, 66, 341-357. Luce, P. A. (1986). Neighborhoods of words in the mental lexicon. Indiana University PhD thesis.

Luce, P. A., & Large, N. R. (2001). Phonotactics, density, and entropy in spoken word recognition. Lng & Cog Proc, 16, 565-581.

33

References (2/2)

Myers, J., & Tsay, J. (2005). The processing of phonological acceptability judgments. *Proceedings of Symposium on 90-92 NSC Projects* (pp. 26-45). Taipei, Taiwan, May.
Newman, R. S., & German, D. J. (2005). Life span effect of lexical factors on oral naming. *Language and Speech*, *48* (2), 123-156.
Saucier, D. M., & Elias, L. J. (2002). Laterality of phonological working memory. *Brain & Cognition*, *48* (2-3), 526-531.
Shadomo, S. (2002). Caramar and analogu in phonotoptic woll.

Shademan, S. (2007). Grammar and analogy in phonotactic well-formedness judgments. UCLA PhD thesis.

Shaywitz, B., et al. (1995). Sex differences in the functional organization of the brain for language. *Nature*, *373*, 607-9.
 Stevens, S. S. (1956). The direct estimation of sensory magnitudes - loudness. *Am J Psychology*, *69*, 1-25.

Stockall, L. et al. (2004). The precise time course of lexical activation. Brain & Language, 90, 88-94.
 Vitevitch, M. S., & Luce, P. A. (1999). Probabilistic phonotactics and neighborhood activation in spoken word recognition. JML, 40, 374-408.

Vos, S. H. et al. (2001). Syntactic parsing and working memory. *Lng* & *Cog Proc, 16* (1), 65-103. 34