Thin & curvy Unconscious knowledge of a subtle Chinese character stroke pattern James Myers National Chung Cheng University (Taiwan) Lngmyers@ccu.edu.tw

NACCL-34 2022

Thanks!

- Taiwan's Ministry of Science and Technology National Science and Technology Council (109-2410-H-194-096-MY3)
- Lab assistants
 - 陳泱儒、劉美君、張佑竹、林玟綺、許少菲
- Software
 - Wenlin (文林) (<u>https://wenlin.com</u>)
 - PsychoPy (<u>https://www.psychopy.org</u>)
 - R (<u>https://www.r-project.org</u>)
- Colleagues
 - Jane Tsay
 - You!

Overview

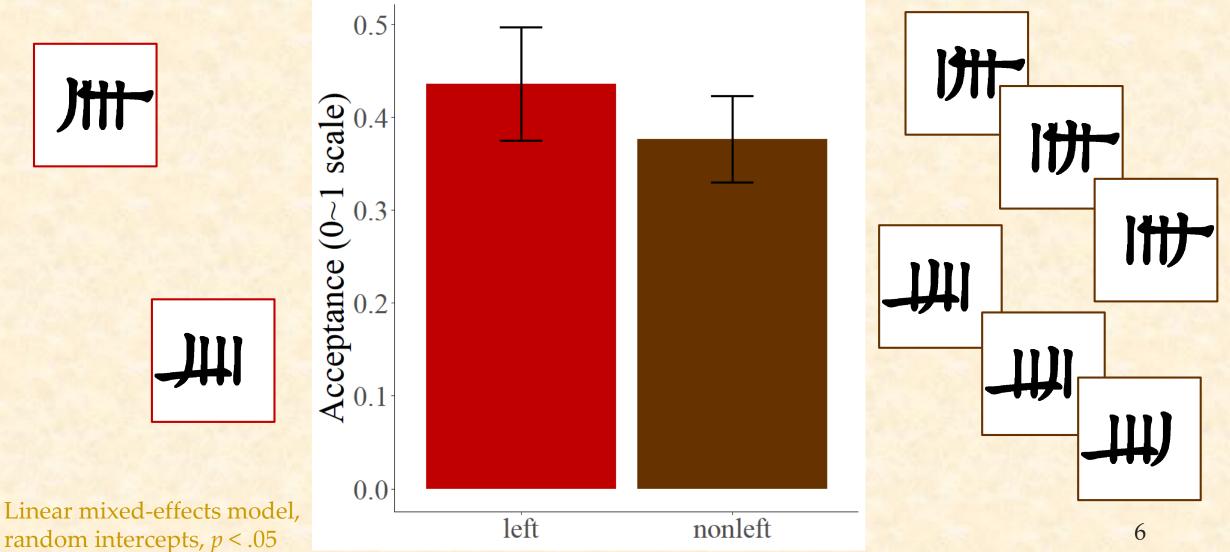
- Stroke curving shows partly predictable regularities in Chinese characters
- These regularities interact with character width
- A new experiment shows that Chinese readers automatically activate their knowledge of this curving/width interaction
- The experiment sheds light on the role of linguistic regularities in perception, even outside speech

Gurved strokes in Chinese characters

• Vertical stroke with a leftward curve (彎), AKA 豎撇 or 直撇

(Almost) never appears anywhere except the left edge
① 川 介 弗 月 舟 用 爪 飛 片 爿
② 明 所 淵
③ 辣 羚 邦 朔 辡 艸 班

(stroke image by Cangjie6 - CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=75305736) 4


Do readers know the left-edge restriction?

• Myers (2019) The grammar of Chinese characters (Routledge)

• Acceptability judgments for 320 fake stroke combinations

z.png	5.png	4.png	wir.png	wiz.png	wis.png	wi4.png	png	png	png	png	.png	.png	.png	.png	png	png	png	png
111-	ı ļıı -	ı ılı -	빠	-JIII	-1)1I	नम्भ	4110	नेता	чШ	-11 1	4111]	J#I	-1111	-#JI	-##)	-##I	-#	-#
ACIKM	ACIKM	ACIKM	ACIKM	ADEJL1.	ADEJL2.	ADEJL3.	ADEJL4.	ADEJM	ADEJM	ADEJM	ADEJM	ADEKL1	ADEKL2	ADEKL3	ADEKL4	ADEKM	ADEKM	ADEKM
1.png	2.png	3.png	4.png	png	png	png	png	1.png	2.png	3.png	4.png	.png	.png	.png	.png	1.png	2.png	3.png
_##]	ЪШ	4)11	41)1	411)	400	чļп	44	411	Щ	-JJII	ШL.	₩L-	ΨĻ	щ	щ	ᅫ	Щ	Ψ
ADEKM	ADFJL1.	ADFJL2.	ADFJL3.	ADFJL4.	ADFJM	ADFJM	ADFJM	ADFJM	ADFKL1	ADFKL2	ADFKL3	ADFKL4	ADFKM	ADFKM	ADFKM	ADFKM	ADGJL1	ADGJL2
4.png	png	png	png	png	1.png	2.png	3.png	4.png	.png	.png	.png	.png	1.png	2.png	3.png	4.png	.png	.png
101	1117	↓ µµ	ųμ	щ	шţ	Щ	₩	Ш	₩	ļ ##	ЩΨ	щ	배	ДШL	DIL.	HJL.	HI).	ļui.
ADGJL3	ADGJL4	ADGJM	ADGJM	ADGJM	ADGJM	ADGKL	ADGKL	ADGKL	ADGKL	ADGK	ADGK	ADGK	ADGK	ADHJL1	ADHJL2	ADHJL3	ADHJL4	ADHJM
.png	.png	1.png	2.png	3.png	4.png	1.png	2.png	3.png	4.png	M1.png	M2.png	M3.png	M4.png	.png	.png	.png	.png	1.png
4 ш	иµг	шĻ	Щ	Щ	ШĻ	щ	μμ	μμ	Ψ	ᄥ	<u>л</u> ш_	IJIL-	INT-	IIIL	 441_	ıµr_	и н г_	ᄥᆣ
ADHJM	ADHJM	ADHJM	ADHKL	ADHKL	ADHKL	ADHKL	ADHK	ADHK	ADHK	ADHK	ADIJL1.	ADIJL2.	ADIJL3.	ADIJL4.	ADIJM1	ADIJM2	ADIJM3	ADIJM4
2.png	3.png	4.png	1.png	2.png	3.png	4.png	M1.png	M2.png	M3.png	M4.png	png	png	png	png	.png	.png	.png	.png
μц	1ДЦ-	ШĻ	Ш <u>л</u>	ļ 111 -	іш –	щ	ᄥ	<u>T</u>	ŧ	ŧ	ŧ	ŧ	ŧ	Ŧ	LEL .	inf ⁻	ŧ	ŧ
ADIKL1.	ADIKL2.	ADIKL3.	ADIKL4.	ADIKM	ADIKM	ADIKM	ADIKM	BCEJL1.	BCEJL2.	BCEJL3.	BCEJL4.	BCEJM	BCEJM	BCEJM	BCEJM	BCEKL1	BCEKL2	BCEKL3
png	png	png	png	1.png	2.png	3.png	4.png	png	png	png	png	1.png	2.png	3.png	4.png	.png	.png	.png
ŧ	重	ŧ	丰	圭	Ĩ	ŧ	ŧ	ŧ	ŧ	专	ŧ	圭	ШĻ	ŧ	ŧ	ŧ	ŧ	圭
RCEKLA	RCEKM	RCEKM	RCEKM	RCEKM	RCEIL1	RCEIL2	RCEIL3	RCEILA	RCEIM	RCEIM	RCEIM	RCEIM	RCEKI 1	RCEKI 2	BCEKI3	RCEKLA	RCEKM	RCEKM

The role of width

• Dominant axis (e.g. via stroke intersections; Myers 2019) (cf. Wang 1983, *Toward a generative grammar of Chinese character structure and stroke order*, University of Wisconsin-Madison Ph.D. thesis; Peust 2006, Script complexity revisited, *Glottometrics* 12)

Wider = Jess Sikely to be curved

• Myers (2019)

1.	Dominant axis						
	Horizontal	<u>Vertical</u>	None				
Curved		月甩周有舟角	丹用				
Straight	册问岡巾內向兩肉市	再甬高商喬	同冏冉束				

- An old observation
 - Wang (1983): 周 is taller than 同 and that's why it's curved

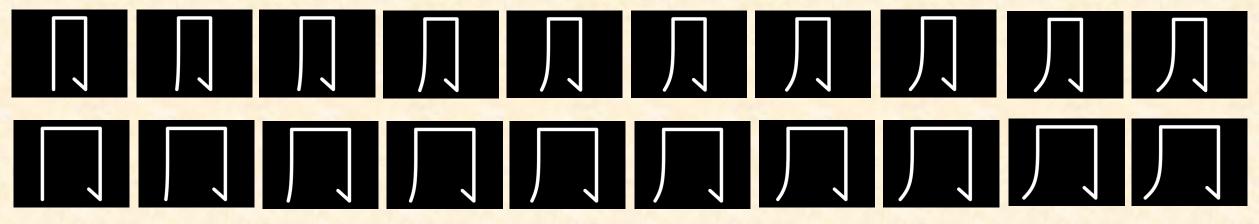
VS.

• Unicode uses different widths for the "arches" 周字框 vs. 同字框

8

So width affects the predictability of curving

Very narrow components usually show left-edge curving
介 升 升 月 丹 舟 片 爿


Very wide components usually do not show left-edge curving
冊 兩

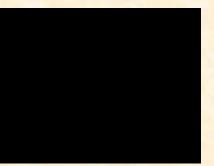
Is this correlation productive?

 Curving has historically generalized in narrow components 肉+半 → 月+半 (胖) 有 vs. 有 非 vs. 非 册 vs. 册 (册) • Curved components avoid "squat" positions at top or bottom 甬: 俑 埇 蛹 誦 踊 悀 捅 桶 涌 vs. 勇 恿 箭;"squat" 角: 确 埆 捔 桷 确 斛 VS. ••• (This pattern is statistically significant beyond these examples: Myers 2019)

- Speeded categorical identification task (cf. Yang & Wang 2018, Categorical perception of Chinese characters by simplified and traditional Chinese readers, *Reading and Writing* 31).
- Flash narrow and wide "arches" with gradiently varied curving (Created with the help of Wenlin)

• Will width affect the detection of curving?

Display


 Very small (2° visual angle) to fit into fovea (hi-res point of eye) (O'Shea 1991, Thumb's rule tested, *Perception* 20)

 Very brief (50 ms) followed by visual mask (2000 ms) (This makes it hard to be consciously aware of shape: Yang & Wang 2018)

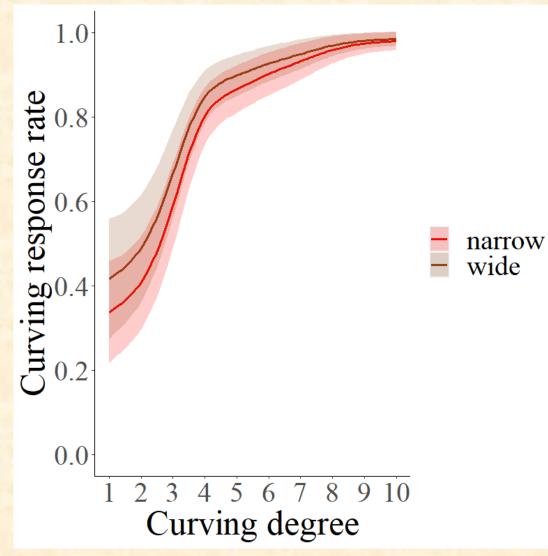
Procedure

- 44 traditional Chinese character readers
- Quickly decide if leftmost stroke is straight or curved
 - Response key locations counterbalanced across participant groups
 - Ordering of wide & narrow blocks were also counterbalanced

0

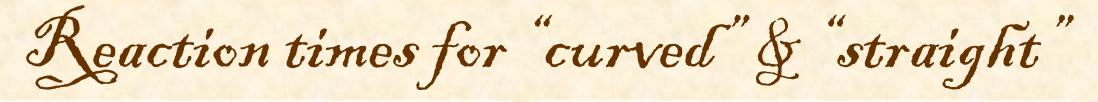
fixation 1000 ms blank 500 ms

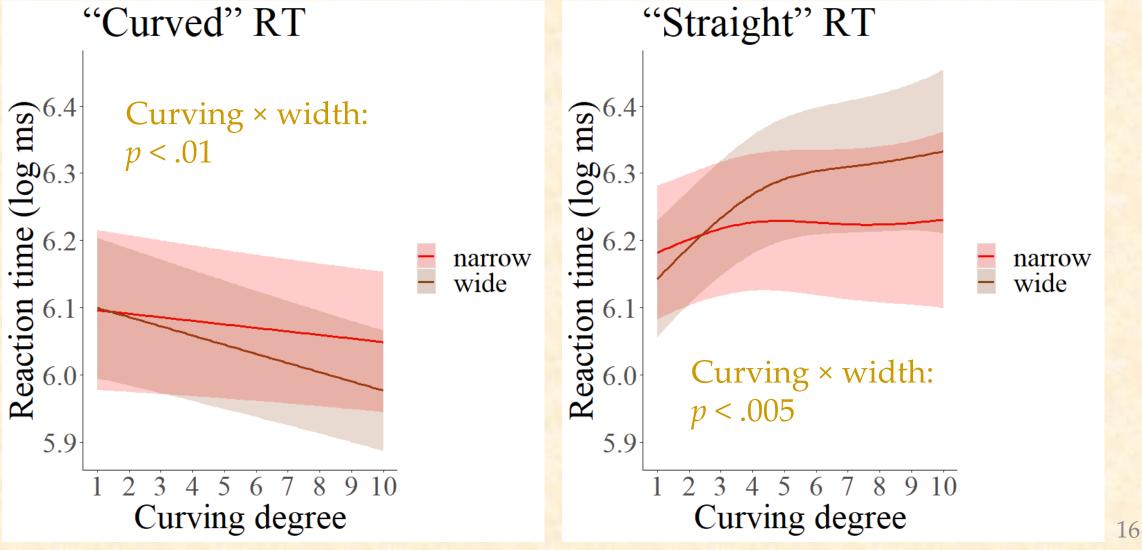
stimulus 50 ms mask 2000 ms


blank 200 ms

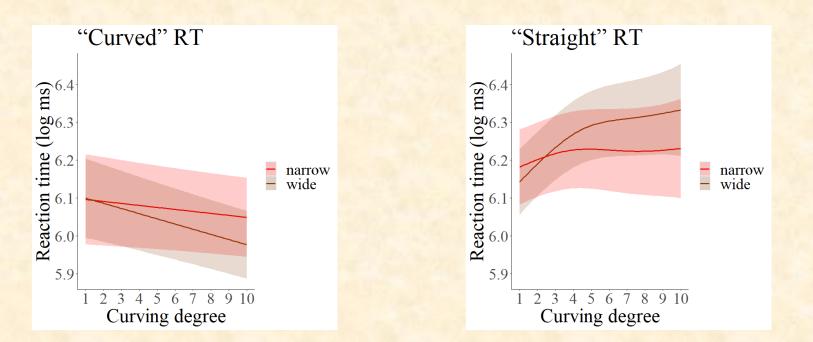
- In each block, items were presented in random order 10 times
- PsychoPy recorded responses and reaction times (RT)

Analyses


- Generalized additive mixed modeling (GAMM)
 - Permits a certain degree of wiggliness in the trend lines (Wood & Scheipl 2020, gamm4, R package)
- Participants as random variable
 - Random slopes (in case participants show different effects)
- Choices ("curved" vs. "straight") predicted via logistic model
- RT analyzed separately for "curved" and "straight" responses
- Key "interaction" was handled via ordered factor approach
 - First capture effect of curving degree in narrow stimuli
 - Then compare this with effect of curving degree in wide stimuli



- Categorical perception
- Most items looked curved
 - Many degrees of curving, but only way to be truly straight
 - Curved strokes also stand out because most strokes in real characters are straight
- But width didn't matter


Curving × width: p > .8

In other words...

- In narrow characters, curving degree had little effect on RT
- In wide characters, curving degree had large effect on RT
 - The more curved the stroke, the faster the "curved" responses
 - The less curved the stroke, the faster the "straight" responses

Why?

- In narrow characters, only curved strokes are expected
 - So readers have easy judgment: "acceptably curved: yes or no?"
- In wide characters, curved and straight strokes are both expected
 - So readers have harder judgment: "like 周 or like 同?"
- Stimuli flashed quickly & effect only in RT, not in overt choices
 - So this orthographic knowledge is activated unconsciously

So what ?

- Reading depends on unconscious statistical learning (Treiman & Kessler 2022, Statistical learning in word reading and spelling across languages and writing systems. *Scientific Studies of Reading* 26(2))
- Contrastive and noncontrastive info interact in perception (Lu & Lee-Kim 2021, The effect of linguistic experience on perceived vowel duration: Evidence from Taiwan Mandarin speakers. *Journal of Phonetics* 86)
 - Width affects curving perception even though width itself is rarely contrastive

• More evidence for "orthographic prosody"? (cf. Myers 2019; Evertz 2018, Visual prosody: The graphematic foot in English and German, Walter de Gruyter)

Curving & width: A prosodic analysis

- Right side is generally larger in Chinese characters
 川 林 比 瑪 駐 鴻(江+鳥)
 Right-headed "foot" (weak-strong: strong=head, weak=the rest): [WS]
- Curving is "lenition", restricted to weak prosodic position: JE
- Meanwhile, separate stroke groups = no curving (generally)
 - 門鬥段行竹段(非拜)
 - So each stroke group forms its own "foot" (each just a head): [S][S]
- Thus the curving/width pattern reflects the number of "feet" 川【WS】 册【S][S]

The End