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1. Introduction 
 
 We’ve discussed a lot of useful statistical techniques so far, ones that you can use in real 
research reports, from standard deviations to z scores to correlations to t tests to chi-squared 
tests. But probably the most commonly used statistical test, especially for experimental data, 
is one that so far we’ve only mentioned in passing: ANOVA, which stands for analysis of 
variance (called 變異數分析 in Chinese Excel, but 方差分析 in Chinese Wikipedia). 
 Why is ANOVA so popular? There are two important reasons. The first reason is that it’s 
like a t test (so it’s a parametric test for continuous, normally distributed values), except that it 
can compare more than two means at a time. In fact, as we’ll see, the t test is just a special case 
of ANOVA. The extra power of ANOVA is useful because it doesn’t always make sense to 
divide your research question exactly in half. For example, suppose you want to compare the 
effect of first language on something or other, so you compare Chinese native speakers with 
English native speakers. But why restrict yourself just to those two languages? With an 
ANOVA, you can include more languages (e.g., English vs. Chinese vs. Navajo). So now we 
have a factor, language, that has multiple levels or treatments (both terms refer to the 
subcategories defining the categorical factor; note that “level” here does not imply any 
hierarchy, and “treatment” doesn’t mean that your data must come from a medical experiment). 
This is sketched in Table 1. 
 

Language 
Chinese English Navajo 

 
Table 1. One factor that has three levels 
 
 Another reason for its popularity is that an ANOVA can also analyze the interaction 
between two or more factors (called 交互作用  in Chinese Excel, but 互動  in Chinese 
Wikipedia). For example, suppose you want to know not just the effect of language (Chinese 
vs. English), but also the effect of gender (female vs. male). Maybe Chinese-speaking men and 
women behave differently, while English-speaking men and women behave the same, or 
maybe the Chinese-English difference goes one way for men, but the opposite way for women. 
In other words, here we have two factors, each with two levels, but the two factors are fully 
crossed, creating four cells (or conditions). 
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 No problem, ANOVA can analyze all that. In fact, in this case it would give you three 
results at the same time, testing for the two main effects, language and gender, plus their 
interaction. We’ve already had a hint of the importance of interactions when we looked at the 
two-way chi-squared test, which is designed to test the interaction between two factors, but not 
the main effects of each factor. That’s why each combination of factor levels in ANOVA is 
called a cell, since we’re actually dealing here with a sort of contingency table (though what 
we care about now are the cell means, not the cell frequencies). This is sketched in Table 2. 
 

  Language 
  Chinese English 

Gender female Chinese female English female 
male Chinese male English male 

 
Table 2. Two crossed two-level factors 
 
 Both of these advantages of ANOVA are related, not just mathematically (the secret lies 
in unpacking the notion of “analysis of variance”), but also in practical terms. This was already 
made clear by the guy who invented ANOVA, who was, of course, that statistical genius 
Ronald Fisher. Before he became famous, he got a job at an experimental research station 
funded by the British Ministry of Agriculture, studying how to raise crops more effectively. 
Being a genius, he quickly realized that many of the studies that had been run there had not 
been designed well enough to yield particularly useful answers. He summed up his crucial 
insight in a paper that helped make him famous: 
 

No aphorism is more frequently repeated in connection with field trials, than that 
we must ask Nature few questions, or, ideally, one question, at a time. The writer 
is convinced that this view is wholly mistaken. Nature, he suggests, will best 
respond to a logical and carefully thought out questionnaire; indeed, if we ask 
her a single question, she will often refuse to answer until some other topic has 
been discussed. (Fisher, 1926, p. 511) 

 
 With his paper, Fisher invented the factorial experiment, which is now standard in many 
areas of science, including linguistics. As I just showed with my examples, many linguistic 
questions involve comparing multiple categories or looking for interactions. It might even be 
argued (as in Myers, 2009a, 2009b) that most linguistic hypotheses (at least in certain domains 
of linguistics) actually relate to interactions, not to main effects. This is because linguistic 
analyses usually aren’t about individual units in isolation (e.g., just nouns), but rather about 
how they relate to other units (e.g., verb agreement with nouns), and that means that you want 
to know how the two units interact. Interactions are also important in cognitive science more 
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generally, where theorists often debate whether two processes (e.g., semantics and phonology) 
are truly separate. Well, if they don’t interact, then they’re probably not part of the same process 
(as argued by Sternberg, 1998; we’ll expand on this point below). 
 Even more generally than all this, once Fisher opened up scientists’ eyes to the notion of 
giving Nature a questionnaire rather than asking just one question at a time, they realized that 
ANOVA itself limited the types of questionnaires they could ask. Fortunately, just as the t test 
is a special case of ANOVA, it turns out that ANOVA is just a special case of regression, and 
regression lets you ask many, many questions at once, far beyond what can be addressed in a 
factorial experiment. I’ll explain exactly how this works in a later chapter, but this fact may 
help explain why most of the rest of this book, after the two ANOVA chapters, focuses on 
regression. Still, it’s not necessarily better to give Nature a complicated questionnaire than a 
simpler one: the more factors you have or the more levels they have or the more interactions 
you consider, the more complicated and confusing your results will be. ANOVA is a powerful 
technique, and regression is even more powerful, but remember Spiderman’s motto: “With 
great power comes great responsibility!” 
 Wait a minute, did I just say that there are two chapters on ANOVA? Yes, that’s how 
important ANOVA is. This first ANOVA chapter focuses on the basic concepts, and explains 
the kind of ANOVA that generalizes from the unpaired t test, that is, the kind of ANOVA used 
for independent samples, such as collected in a between-groups experimental design. The 
second ANOVA chapter will discuss the kind of ANOVA that generalizes from the paired t 
test, that is, the kind of ANOVA used for correlated samples, such as collected in a within-
groups experimental design. 
 
2. An overview of analysis of variance 
 
 Before we try out ANOVA for ourselves, let’s get a few basic concepts clear: why we 
can’t just use a bunch of t tests, why variance is so crucial to analysis of variance, and the 
different kinds of ANOVA and when we might use them. 
 
2.1 The sin of multiple comparisons 
 
 Let’s start with the most basic question. You’ve worked hard to see how z scores relate to 
the z test, and how the z test led to the one-sample t test, and how that leads to the unpaired and 
paired t test (and also saw how all of this is kind of related to the chi-squared test too, though 
that’s for categorical data, not continuous data like all of the other things I just mentioned). So 
what if we have three or four samples now, instead of just two? Why can’t we just do a bunch 
of t tests, testing them one pair at a time? For example, why not compare Chinese vs. English, 
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Chinese vs. Navajo, and English vs. Navajo? Why not compare Chinese men vs. Chinese 
women, Chinese men vs. English women, etc? 
 Because that would be very, very bad. Like any statistical test, each time you do a t test, 
its p value is calculated on the assumption that this is the only test you did: it doesn’t “know” 
that you also did all the other t tests too. That is, the probability is something like P(chance), 
not the conditional probability P(chance | all those other tests). The t test math is carefully 
designed so that if your data set is large and normal enough, the probability of getting p < .05 
if the null hypothesis is true really is pretty close to .05. But if you keep running t tests on 
overlapping subsets of the same data (e.g., Chinese vs. English, and then Chinese vs. Navajo), 
then it gets more likely than .05 that you’ll get a result that says “p < .05”, even though the null 
hypothesis is correct. So making these multiple comparisons increases the risk of a Type I 
error. 
 It’s actually pretty easy to calculate exactly how unreliable the p value becomes in this 
kind of situation. For example, imagine that you have just one factor with five levels, and you 
want to compare all of the pairs. How many pairs is that? Well, each pair can include one of 
five levels, and the other level in the pair has to be different, so it can be one of four different 
levels, making 5×4 pairs. But that treats the pairs AB and BA as different, when actually order 
doesn’t matter, so we divide the total by two: 5×4/2 = 10 pairs of levels to compare. 
 Now imagine that, sadly, the null hypothesis is actually true for all of these pairs: this 
factor just isn’t significant at all. If we have set our alpha level α = .05, that means (by definition) 
that the probability of getting a Type I error for comparison (one t test) is p = .05. That, in turn, 
means that the probability of not getting a Type I error for that one comparison is 1 - .05 = .95 
(since getting a Type I error and not getting a Type I error are the only two possibilities, so 
their two probabilities must add up to 1, by the addition rule of probability). 
 But we’re not just running this one t test on this one comparison, but 10 t tests on 10 
comparisons. By the multiplication rule of probability, the total probability that all of these 
comparisons give no Type I error is (.95)10. The opposite of this situation would be where at 
least one of these 10 comparisons gives a Type I error, and since these two possibilities are the 
only two possibilities, the probability of getting at least one Type I error among these 10 
comparisons is 1 - (.95)10 = .4012631. 
 This means that if we test this 5-level factor using t tests, we have a 40% chance of 
committing a Type I error. That’s much higher than our alpha level of .05, which is what the 
Type I error risk should be for a proper statistical test. And this means that when you run a 
multiple comparison like this, you just can’t trust the p values that any of the repeated tests 
give you. So don’t do it! 
 What we need instead is a single test that looks at all of our data at the same time, and 
that’s just what an ANOVA does. That is, the null hypothesis for an ANOVA looks like the 
following, with all of the k sample means compared all at once: 
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ANOVA null hypothesis:  H0: µ1 = µ2 = ... = µk 
 
2.2 Analyzing variance 
 
 With computers it’s pointless to compute ANOVAs by hand (the way Fisher had to), but 
it’s still useful to know basically how they work. Conceptually, this will help you feel confident 
that ANOVA is logical and justified (not just magic), and will also help you see its connection 
with regression, which will become crucial in later chapters. In practical terms, knowing how 
ANOVA works is also important for choosing the right kind of ANOVA for your particular 
situation, and to find mistakes in your work (and in other’s work too, perhaps), and even for 
getting the syntax right when you run ANOVA in R. 
 The key idea is in the name: analysis of variance. How can analyzing variance help 
generalize the t test? Like many ideas given to us by geniuses, the core idea is so obvious that 
it’s amazing nobody thought of it before Fisher. Here it is: when comparing multiple samples 
at the same time, the null hypothesis H0: µ1 = µ2 = ... = µk should be rejected if there is 
“significantly” more variance between (組間) the samples (i.e., in the distribution of sample 
means) than within (組內) each of the samples. The variance across the abstract samples {µ1, 
µ2, ..., µk} is “interesting”, but the variance within the samples S1, S2, ..., Sk is “boring”, so we 
want to see if the former is bigger than the latter. How can we compare two variances? Hm, do 
we know any test invented by Fisher that relates to comparing variances...? Something starting 
with the letter “F” maybe...? Ah yes, the F test: we divide the “interesting” between-sample 
variance by the “boring” within-sample variance, and if the resulting F value is “big enough”, 
we got ourselves a significant ANOVA result. This logic is illustrated pictorially in Figure 1 
(C1, C2, ... = individual Chinese scores, and likewise for the other stuff). 
 

”Between” variance  
    

Chinese English Navajo  
C1 E1 N1 

“Within” variance C2 E2 N2 
... ... ... 
Cn En Nn 

 
Figure 1. Variance between and within groups 
 
 Sheer genius, I say. Of course, although this key idea is simple, the math gets complicated 
because the precise mathematical definitions of “between”, “within”, and “significantly more 
variance” all depend on what your precise data situation is like. In particular, the “within” 
variance isn’t the same as the variance of any particular sample, since there is more than one 
of them; we need some general way to pool the variance across the samples, the way we did 
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for the unpaired t test. As usual, though, I’ll save the scary details until after we’ve practiced 
running some ANOVA ourselves. 
 
2.3 Different types of ANOVA 
 
 We’ve already hinted at the crucial issues that you have to consider when choosing which 
type of ANOVA to run. 
 First, are you comparing samples that differ in terms one factor (e.g., just language)? Then 
do a one-way (單因子) ANOVA. If you’re comparing samples that differ along two factors 
(e.g., language and sex), then do a two-way (雙因子) ANOVA. If you have three factors, do a 
three-way ANOVA, and so on (but remember Spiderman’s words of wisdom). 
 Second, are you looking at a real-world situation where you can expect the samples to be 
independent, or are they probably correlated? If your samples of measurements are independent 
(e.g., because each data point comes from a separate speaker or linguistic form), then do an 
independent-measures ANOVA; that’s what we’ll look at in this chapter. If they are not 
independent, then you need to do a repeated-measures (重複測量) ANOVA; that’s what we’ll 
look at in the next chapter. 
 Introductory statistics textbooks (e.g., Gravetter & Wallnau, 2004, just to take a random 
example from my collection) traditionally teach you how to do the three simplest types of 
ANOVA by hand. These three happen to be the same three types that Excel has built-in tools 
for. Of course, R (and other “real” stats programs) can do many more types of ANOVA, and 
once you learn about the ANOVA-regression connection, you can make Excel do some other 
types of ANOVA too. 
 These three simplest types of ANOVA are listed below in Table 3, along with the names 
for them commonly used in psychology (and thus also in experimental linguistics), then the 
names used in Excel (often quite different, since Excel is aimed more at business people than 
psychologists), and finally a note on their general purpose. All three types appear at the top of 
the Analysis ToolPak list, since “ANOVA” starts with “A”, the first letter in the alphabet. 
 Note the difference between the terms “repeated-measures” (as used by psychologists) 
and “with replication” (as used by Excel). By “replication,” Excel means that each of the 
samples has more than one item. This strange terminology will make a bit more sense when 
we see how Excel expects you to put the data into the spreadsheet, which in turn relates to the 
different types of math for the different types of ANOVA. A two-way independent-measures 
ANOVA involves an ANOVA table like Table 2 above, where each ANOVA cell represents a 
set of data points. But in Excel, each cell represents just one data point, right? So to mimic a 
two-way ANOVA table in Excel, each ANOVA cell actually contains a whole range of Excel 
cells, typically a column; the factor levels represented by this ANOVA cell are thus “replicated” 
within the column (e.g., Chinese-female data point 1, Chinese-female data point 2, etc). By 
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contrast, a one-way repeated-measures ANOVA has only one fixed (non-random) factor that 
our hypothesis is about (e.g., nouns vs. verbs), but it also has the purely random variable (e.g., 
speakers or words) that is grouping our measurements together. Entering this information into 
Excel thus again requires a two-dimensional table, with columns for the fixed variable and 
rows for the random variable. But since each row represents one level of the random variable 
(e.g., just one speaker or word), the Excel cells are not “replicated” across the ANOVA cells. 
 
Table 3. The three simplest types of ANOVA 
 

Name in psychology Excel’s (confusing) name Purpose 
One-way independent-
measures ANOVA 

ANOVA: One-Factor 
(單因子變異數分析) 

One multi-level factor from 
a between-group 
experimental design 

Two-way independent-
measures ANOVA 

ANOVA: Two-Factor with 
Replication (雙因子變異數分

析：重複試驗) 

Two multi-level factors (and 
interaction) from a between-
group design 

One-way repeated-
measures ANOVA 

ANOVA: Two-Factor Without 
Replication (雙因子變異數分

析：無重複試驗) 

One multi-level factor from 
a within-group design 

 
 Got it? No? Well, be patient; you’ll get some concrete examples later in this chapter, and 
in the next chapter too. For now, just try to be aware of the terminology differences in Table 3. 
 
3. One-way independent-measures ANOVA 
 
 Time to get our hands dirty. What is it like running an ANOVA in Excel or R? To find 
out, we’ll look at a simple (fake) experiment that has one factor but three levels, each tested on 
a separate group of people, where what we care about is the means (not the frequencies). Since 
there are more than two levels, we can’t do a t test, but a one-way independent-measures 
ANOVA is just the right tool for us. I’ll first go through the example, and then explain how the 
math works. Since we might also be curious about comparing pairs of levels within this trio, 
we’ll need to learn how to do that “safely” too, without falling into the Type I error trap of 
multiple comparisons. 
 
3.1 Three colored rooms 
 
 Here’s our fake experiment, with such a tiny data set that I can print it right in this chapter. 
It’s tiny because I “borrowed” it from the equally fake example in Gravetter & Wallnau (2004) 
(Table 13.1, p. 401), which is one of those old textbooks that teach you how to do ANOVA by 
hand. I kept the numbers, but changed the factors to something a bit more linguistic. As we’ll 
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see, their numbers make the statistics come out suspiciously “neat”. In real life you shouldn’t 
really do ANOVA with such a small sample, especially, as here, the measurements actually 
represent counts, which aren’t completely normally distributed. But let’s forget about these 
realities for now and get on with the story. 
 Once upon a time, a wise old Chinese teacher wanted to test whether room color affects 
how well foreign students learn new Chinese words (it’s not impossible, right?). So she 
randomly assigned 15 students to red, blue, or yellow rooms (5 people per room) and had each 
one try to learn 10 new words. In this experiment, we have independent samples defining three 
levels of one factor, so it’s a pretty good situation for this type of ANOVA (aside from the tiny 
sample size and the likelihood that the samples aren’t very normal). 
 Building on something I mentioned in the previous section, this test still assumes that you 
only care about these three specific colors. In other words, color is a fixed variable here, not a 
random variable, so we cannot generalize to all colors; our conclusions only apply to red, blue, 
and yellow. In later chapters we’ll learn other tests that can generalize like this, but not for a 
while yet. 
 Anyway, the (fake) results of this dumb experiment are as shown in Table 4 (also available 
in the file ColoredRooms.txt). Note that the rows don’t represent anything; each room has five 
totally different people. 
 

Red Blue Yellow 
0 4 1 
1 3 2 
3 6 2 
1 3 0 
0 4 0 

 
Table 4. The effect of room color on word learning (Excel-style table) 
 
 Hm, it seems there might be an effect of color here, since more words were learned in the 
blue room (MBlue = 4) than in the other two rooms (MRed = 1, MYellow = 1; I told you the values 
in this fake example are suspiciously neat). But is this statistically significant? 
 
3.1.1 Three colored rooms in Excel 
 
 As usual, let’s try Excel first. So enter that table into an Excel spreadsheet, fire up the 
Excel statistics toolbox, and choose 單因子變異數分析 (ANOVA: One-Factor), since Table 
3 above shows that this is the right kind of Excel tool for this situation. Then we select the 
entire table of numbers including the labels (Excel lets you run a one-way independent-
measures ANOVA even if the sample sizes aren’t the same), do the rest of the usual stuff 



Ch. 8: Introduction to ANOVA 
 

9 

(including clicking the check box to indicate that, yes, we do have labels on our columns), and 
we get our output. This includes a table summarizing the sizes, means, and standard deviations 
of our three levels, but also the ANOVA report table shown in Table 5. 
   

ANOVA       
變源 SS 自由度 MS F P-值 臨界值 
組間 30 2 15 11.25 0.001771 3.88529 
組內 16 12 1.333333    
       
總和 46 14     

 
Table 5. Excel’s output for the colored room experiment 
 
 This table shows some statistical terms that you should already be able to figure out, even 
based on my informal discussion so far. So in the upper left we see 變源 (variance source; 
English Excel only has room for the one word “Sources”). As I told you recently, there are two 
main sources of variance in an independent-measures ANOVA, namely 組 間  (the 
“interesting” variance between the groups, in this case, across three colored rooms) and 組內 
(the “boring” variance that is pooled within the groups, i.e., each individual student). There’s 
also a row for total variance (總和). You can also see the terms SS (sum of squares) and MS 
(mean sum of squares), which we’ve seen a few times so far, starting with the definition of 
standard deviation. So on the “between” row we have SSbetween and MSbetween, and on the “within” 
row we have SSwithin and MSwithin. Another name for MSwithin in ANOVA is mean squared error, 
which psychologists usually abbreviate as MSE (sometimes as MSe). And look: each of these 
two sources of variance also has its own df (自由度). In the total variance row, the SS value is 
just the sum of the other two SS values, and likewise for df. 
 And here’s something else cool: in each row, MS = SS/df (try it!). As we noted many 
chapters ago, MS is just another way to represent variance. So these MS values represent “how 
far away” a value is from the null hypothesis value (remember how we also divided by df in 
the z score formula, which eventually turned into the t test formula). 
 With that insight, where do you think that lonely F value comes from? Well, the F test is 
for comparing one variance to another, and it’s computed simply by dividing one variance by 
the other. So what happens if we divide MSbetween by MSwithin...? Wow! It’s exactly the F value 
in the table! I’m so amazed! 
 That’s a pretty large F value, much much higher than 1; I’ll bet it’s statistically significant. 
I wonder what the p value should be for this F value, in the F distribution defined by those two 
df values? How can I calculate this in Excel? Oh, right, I can use =FDIST(F, df1, df2), and 
those three argument values are right there in the Excel table, so I can just click them, and... I 
can’t believe it! I got the same p value shown in the table! The table also gives us the critical 
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value [臨界值], which is the F value for this distribution where we get p = .05, but that’s mainly 
for computing confidence intervals, and we’re not going to worry about ANOVA confidence 
intervals until the next chapter. 
 This whole cascade of calculations started with the SS values, but explaining those 
requires new formulas, so I’ll save them for later too. For now, just rest assured that they are 
conceptually the same as the SS values we saw in earlier chapters: a measure of overall 
difference, with squaring to get rid of negative values. We’ll need to explain the df values too, 
but that’s also for later. 
 For now, let’s return to the wise old Chinese teacher. What should she write in her report? 
Well, something like this would be good: “The number of words learned in each room varied 
across red (M 1, SD 1.22), blue (M 4, SD 1.22), and yellow (M 1, SD 1) rooms, a difference 
that proved significant by a one-way independent-measures ANOVA (F(2, 12) = 11.25, MSE 
= 1.33, p < .01).” Notice what she reports: the means (and standard deviations, for 
completeness), the full name of the test, the name of the distribution (F), the values that define 
it (the two df values), the actual F value, the p value, and (something new) the MSE. The MSE 
is not on the same scale as the means, since as a variance, it’s squared, but it gives the readers 
some sense of the “noisiness” of the data, and can help them check your results (as we’ll see, 
MSbetween, the other MS value used to calculate F, can be estimated from the reported sample 
means). 
 Before leaving Excel, let me you show you something else that’s useful to know. 
Remember how I said the t test is a special case of ANOVA? Specifically, the unpaired t test 
(not Welch’s test, but the version assuming equal variance) is a special case of a one-way 
independent-samples ANOVA. We can see this by running Excel’s ANOVA tool on just two 
columns of our colored room data set, and comparing its output with what we get with Excel’s 
t test tool. 
 Play along! If you run an independent-measures ANOVA on just Red vs. Blue, you get 
F(1, 8) = 15, p = .004721383.... If you do an unpaired t test (assuming equal variance) on these 
same two samples, you get t(8) = -3.872983346..., p = .004721383... (two-tailed). The exact 
same p value comes out, but do you see that the df and t values are also related? Namely, the 
df for this t test is the same as the dfwithin used by ANOVA, and t2 = F: (-3.872983346...)2 = 15. 
Not only that, but MSE = pooled s2 = 1.5. So a t test really is a special case of ANOVA! 
 
3.1.2 Three colored rooms in R 
 
 How do you do all of this stuff in R, you ask? Well, R does have a function called anova(), 
but it turns out it’s not designed for running ANOVA tests per se, but rather for creating 
ANOVA tables in general. Since almost everything in statistics is related to everything else, 
ANOVA pops up in other situations too; in fact, we’ve already seen that when you run a 
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regression analysis in Excel or R, you get an ANOVA table, along with the coefficients table. 
That’s what R’s anova() function is for, so we don’t want that now (but we’ll come back to it 
again when we return to regression in later chapters). 
 Instead, what we want is a specialized R function called aov() (which also stands for 
Analysis Of Variance, of course). This is designed to reflect the logic of ANOVA in its syntax, 
so it lets us run just the kind of ANOVA that we want. 
 The first step to using it is to give R our data. As usual, R expects the data to be arranged 
with separate columns for the independent variable (Color) and dependent variable (Learning). 
In our case, we have to rewrite Table 4 as shown in Table 6 below. 
 

Color Learning 
Red 0 
Red 1 
Red 3 
Red 1 
Red 0 
Blue 4 
Blue 3 
Blue 6 
Blue 3 
Blue 4 
Yellow 1 
Yellow 2 
Yellow 2 
Yellow 0 
Yellow 0 

 
Table 6. The effect of room color on word learning (R-style table) 
 
 To save you copy/pasting, typing, and file-loading trouble, here’s some code that puts 
these values into a data frame called exp1 (for Experiment 1, since we’ll get another one later): 
 
exp1 = data.frame(Color = c(rep("Red",5), rep("Blue",5), rep("Yellow",5)), 
 Learning=c(c(0,1,3,1,0),c(4,3,6,3,4),c(1,2,2,0,0))) # To keep track of the 3 samples 
head(exp1) # See what it looks like 
 
 Color Learning 

1 Red 0 
2 Red 1 
3 Red 3 
4 Red 1 
5 Red 0 
6 Blue 4 
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 As usual for R, aov() takes a formula as an argument (unlike t.test(), it has no option to 
list the samples separately). Also as usual for R (though again, different from t.test()), running 
aov() merely creates a model; to show the actual ANOVA table we need to put this model 
inside the summary() function. 
 Let’s try it out. I’ll do it in two steps first, just to show that aov() merely creates a so-
called aov object. Given the link between ANOVA and regression, I hope you’re not surprised 
to see that R mentions “residuals” here; remember that those are the differences between the 
actual values and the values predicted by a model, and thus gives a measure of the noisiness of 
your data (relative to your model). Given that this fake data set was designed to give a 
significant result despite being extremely tiny, it’s also not surprising the R warns us that 
something may be “unbalanced” here (which we’ll ignore anyway). 
 
colors.aov = aov(Learning~Color, data=exp1) # Creates an "aov" object 
colors.aov # Basic descriptive information about this object 
 
Call: 
   aov(formula = Learning ~ Color, data = exp1) 
 
Terms: 
 Color Residuals 
Sum of Squares 30 16 
Deg. of Freedom 2 12 
 
Residual standard error: 1.154701 
Estimated effects may be unbalanced 
 
 But now if we put this aov object inside summary(), we can get basically the same 
ANOVA report table that Excel gives us (except without the critical value or the row for total 
variance). R’s terms are slightly different, though; so SS is “Sum sq”, MS is “Mean Sq”, and 
“Within” is “Residuals” (again, representing the noisiness of our data relative to our model). 
 
summary(colors.aov) 
 
 Df Sum Sq Mean Sq F value Pr(>F)  
Color 2 30 15.000 11.25 0.00177 ** 
Residuals 12 16 1.333    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 
 
 Unless you want to use the aov object for something else (e.g., checking the residuals or 
balance, or running some follow-up that we’ll discuss in a later section), you can get the same 
ANOVA report table in just one step, like so (try it!): 
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summary(aov(Learning~Color, data=exp1)) 
 
3.2 More about the math of ANOVA 
 
 Let’s flesh out how this works in a bit more detail. As a review, recall that the ultimate 
goal of ANOVA is to get a p value for the null hypothesis that the between-sample variance is 
the same as the within-sample variance, which we do with F tests. In an F test, you divide one 
sample variance by another: F = s1

2/ s2
2, and to figure out the p value from the F value, you 

need the df for both the numerator (分子 on top) and the denominator (分母 on the bottom). 
 To see how this relates to ANOVA, you have to recall two more things. First, what we 
want to know is whether between-sample variance is bigger than within-sample variance, so 
we want to make between-sample variance the numerator (top) and within-sample variance the 
denominator (bottom). Second, recall what variance (s2) really means. It means the mean of all 
the squared differences between the data points and the mean. When you calculate this mean, 
you first calculate the sum of squares (SS) and then divide by a number related to the total 
(adjusted to df, by subtracting something, in order to “punish” our arrogant attempt to learn 
about the abstract, infinite population from our finite sample). This gives you a mean sum of 
squares (MS). As we have seen, SS, MS, and df all appear in the ANOVA reports generated by 
Excel and R. 
 Let’s put these concepts together. It’s easiest to follow the logic if we work backwards 
from the last step. 
 Our final goal is to compute the p value. This is the area in an F distribution to the right 
of the F value generated by the F test. The specific F distribution is determined by dfbetween 
(numerator on top) and dfwithin (denominator on the bottom), which are determined by different 
formulas depending on the particular ANOVA. In the case of the one-way independent-
measures ANOVA, which is the simplest type of ANOVA, the two df formulas are as follows: 
 
One-way independent-measures ANOVA df: 
 
  dfbetween = k – 1, where k = the number of levels of the factor 
  dfwithin = Σi(ni – 1) for each sample i of size ni 
 
 Do these formulas work for the colored room experiment? Well, our one factor (Color) 
has three levels, so k = 3, so dfbetween = 2, and indeed, that’s what the Excel and R reports both 
show. Each room had five people in it, so dfwithin = (5-1) + (5-1) + (5-1) = 3×4 = 12, and that’s 
just what’s shown in our ANOVA report tables as well. 
 As with the unpaired t test, the math is the simplest if all of the samples have the same 
size (i.e., n = n1 = n2 = ... nk), and so that’s what I’ll explain below, just to give you the core 
concepts. Equal cell sizes aren’t obligatory to run an ANOVA, but again, as with the unpaired 
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t test, the greater the difference in sample sizes, the riskier it is to violate the other usual 
assumptions of this kind of test, namely equal variance across all samples, and normally 
distributed populations. 
 Various tricks have been suggested to make cell sizes equal by estimating the missing 
data (see, for example, https://www.r-bloggers.com/2018/06/dealing-with-missing-data-in-
anova-models/). Sadly, the simplest method you might think of, namely replacing all missing 
values with the mean of the cell, won’t work, since this changes that cell’s variance, as you can 
see if think about it: putting a distribution’s mean into the distribution makes the distribution 
“taller” in the middle, which will shrink the standard deviation. Instead, the valid methods all 
involve using regression to predict what the missing values are most likely to be, but I find that 
ironic, since as I keep saying, ANOVA is itself just a special case of regression anyway, so you 
may as well use regression for the whole analysis in the first place. 
 In any case, no matter what kind of ANOVA you do, the F test formula is always as 
follows: 
 

General ANOVA F formula:  𝐹𝐹 = 𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑀𝑀𝑀𝑀𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖

 

 
 If the null hypothesis is false, the two MS values will not only be different, but MSbetween 
will be bigger than MSwithin (also known as MSE). Thus the bigger the “interesting” difference, 
the bigger F will be, and the smaller p will be. By contrast, if the null hypothesis is false, F 
will be close to or even below 1. 
 At an abstract level, MSbetween and MSwithin are both calculated in the same general way, as 
shown below. Remember that by dividing the sum of squares (SS) by the degrees of freedom 
(df), you get the variance. 
 
General ANOVA MS formulas: 
 

 𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

 

 𝑀𝑀𝑀𝑀𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖

 

 
 The formula for MSwithin = MSE is also related to something we saw earlier with the 
unpaired t test. You probably don’t remember this, but for that test, the pooled variance was 
calculated as follows: 
 

Unpaired t test pooled variance formula: 𝑠𝑠𝑝𝑝2 = 𝑆𝑆𝑆𝑆1+𝑆𝑆𝑆𝑆2
𝑑𝑑𝑑𝑑1+𝑑𝑑𝑑𝑑2

 

https://www.r-bloggers.com/2018/06/dealing-with-missing-data-in-anova-models/
https://www.r-bloggers.com/2018/06/dealing-with-missing-data-in-anova-models/
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 The MSE used in ANOVA is just a generalization of this to multiple samples: 
 

General ANOVA MSE formula:  𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑆𝑆𝑆𝑆1+⋯+𝑆𝑆𝑆𝑆𝑘𝑘
𝑑𝑑𝑑𝑑1+⋯+𝑑𝑑𝑑𝑑𝑘𝑘

 

 
 Since the bottom part of the MSE formula is just the sum of all the sample df values, and 
we already know that this gives us dfwithin, and since MS = SS/df, it must therefore be the case 
that SSwithin is just what’s at the top of the MSE formula, namely the sum of all the samples’ SS 
values: 
 
One-way independent-measures ANOVA SSwithin:  SSwithin = Σi SSi  (i across samples) 
 
 Does this SSwithin formula work for the colored room experiments? Let me look up how to 
calculate SS for samples.... Oh, right, it’s just the step right before dividing by df, on the way 
to calculating variance. Namely, you subtract the sample mean M from each data point x, then 
square the difference, then sum up all of these squares: 
 
Sample SS:  Σi (xi-M)2  (i across data points) 
 
 You can try computing this in Excel, but it’s easier to show you using R (try it!): 
 
# Pull out our three samples 
red = exp1$Learning[exp1$Color=="Red"] 
blue = exp1$Learning[exp1$Color=="Blue"] 
yellow = exp1$Learning[exp1$Color=="Yellow"] 
 
# Compute sample SS values (so glad R uses vector logic!) 
SS.red = sum((red-mean(red))^2) 
SS.blue = sum((blue -mean(blue))^2) 
SS.yellow = sum((yellow -mean(yellow))^2) 
 
# Compute SSwithin: 
SS.red + SS.blue + SS.yellow 
 
 This gives you 16. Is there a 16 somewhere in those ANOVA report tables? Oh, there it 
is: it’s SSwithin! Perfect. 
 The other MS value, MSbetween, is trickier, but I’ll just to give its formula for the simplest 
case, where all of the samples (ANOVA cells) have the same size n. In that case, the formula 
is like so, where SSM represents the sum of squares across the sample means (i.e., treating the 
set of sample means itself as a set, over which we compute SS). Conceptually, this value is 
capturing the differences across the samples (SSM) and enhancing this value by the sample size 
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(n), since as usual, with larger samples, even a slight difference across sample means can 
become statistically significant. 
 
One-way independent-measures ANOVA SSbetween (same n): SSbetween = n∙SSM 
     where  𝑆𝑆𝑆𝑆𝑀𝑀 = ∑�𝑀𝑀𝑖𝑖 − 𝑀𝑀𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�

2
   (for i across samples) 

 
 Does this formula work for our colored rooms experiment? Remember that our three 
means are MRed = 1, MBlue = 4, MYellow = 1, so SSM = Σi (Mi-Mgrand)2, where Mgrand is the grand 
mean, across all three of these means. Then SSbetween is that number times 5 (the size of each 
same-sized sample). Let’s just let R do it for us, and if you try it, you’ll see that it gives us 30, 
which is indeed the same as the SSbetween value reported in the ANOVA report tables. 
 
three.means = c(mean(red),mean(blue),mean(yellow)) 
SSM = sum((three.means - mean(three.means))^2) 
5 * SSM 
 
 If the sample sizes are different, the formula for SSbetween gets more complicated, but it 
remains conceptually the same, as a measure of cross-sample means enhanced by the sample 
sizes. 
 Since we’re mainly discussing these formulas for conceptual purposes, let’s add one more 
conceptually important formula. Remember how the last line of Excel’s ANOVA report table 
gave “total” SS and df values? SStotal literally represents the total sums of squares, as reflected 
in the following formula, where x represents any data point in any set and M is the grand mean 
across all of the data: 
 
SStotal = Σ(x – Mgrand)2 
 
 But as we saw from Excel’s ANOVA report table, it’s also related to the other SS, just as 
the total df is: 
 
General ANOVA SStotal formula:  SStotal = SSwithin + SSbetween 
General ANOVA dftotal formula:  dftotal = dfwithin + dfbetween 
 
 The conceptual value of these formulas is that they express the idea that SSwithin and 
SSbetween partition (divide) the total variability expressed by SStotal. This is a great illustration 
of how statistics goes beyond the clockwork logic of Newton’s day: instead of being scared of 
variability, statistics sees everything as variable, yet manages to bring it under control by 
systematically dividing the “interesting” variability (associated with the factors in our model)  
from the “boring” variability (the residual noise that our model can’t explain). The notions of 
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partitioning the variance, residuals, and the ratio of “explained” to “total” variability will come 
up repeatedly in the rest of this book. 
 
3.3 Post-hoc tests 
 
 All right, the stupid color experiment shows that color matters in word learning, but can 
we also say that blue is the best color? After all, that was the color associated with the best 
learning (mean of 4, compared to 1 for each of the other two colors). But this is actually a new 
hypothesis, not the same as the one tested by the ANOVA itself. The analysis we just did for 
the stupid color experiment merely tested whether the three colors are different overall, but it 
didn’t test which color is different from what. 
 Another situation where this kind of problem arises in linguistics as in a priming 
experiment, where you ask people to respond to target items preceded by primes that are related 
to the targets in various ways, so you can see which kind of prime affects the target response 
speed. For example, if the target is CAT, maybe one type of prime is related to the meaning 
(dog) and another is related to the sound (hat). In such experiments, you also need a control 
condition with no relation (e.g., pen). So the factor PrimeType has three levels (Semantic, 
Phonological, Control), but what you actually care about are the pairs of levels (Semantic vs. 
Control and Phonological vs. Control to see if there is any priming at all, and Semantic vs. 
Phonology to see if these properties differ in processing). The problem is that a one-way 
ANOVA, by itself, won’t test these individual comparisons. 
 Personally, I think the best way to deal with this problem is to avoid it in the first place. 
Why not design your experiment in terms of binary factors? For example, if the Chinese teacher 
suspected that blue was the best color, why not just test it against what she thought would be 
the second-best color? If a multi-level factor is unavoidable, you could use a regression analysis 
(generalizing beyond ANOVA), which lets you compare each level in a multi-level factor 
against a single baseline level (we’ll learn how to do this when we get to the multiple regression 
chapter). 
 But for our Chinese teacher, it’s too late: she already ran her study, and she wants to 
compare her colors. What are our options? 
 
3.3.1 The dumbest way: Planned comparisons 
 
 The most obvious way to compare pairs of levels within a multi-level factor seems like 
cheating at first, and in fact, the more you think about it, the more like cheating it seems to be. 
Yet unfortunately it remains common, just because it’s so simple to do. This method is called 
planned comparisons. This is where you claim that even before you ran your experiment, you 
planned on comparing just two specific levels, say Blue vs. Red. So in a sense you did two 
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experiments at the same time: not just the Red-vs.-Blue-vs.-Yellow experiment, but also the 
Red-vs.-Blue experiment. 
 But didn’t I say at the start of this chapter that doing multiple comparisons like this raises 
the risk of Type I error so high that the p values become reliable? Yes, I did say that, and it’s 
still true. For this reason, many experts (e.g., Gelman & Loken, 2013) strongly advise against 
so-called planned comparisons. 
 The reason why some people say planned comparisons are OK anyway is that by claiming 
that you were planning to do these two-sample tests all along, the conditional probabilities are 
technically still “innocent” of all the other tests you might also do. That is, you don’t run the 
Red-vs.-Blue experiment because of what you got in the Red-vs.-Blue-vs.-Yellow experiment; 
you supposedly planned to do both all along, so the p values for the two-sample experiment 
can still be seen as testing the basic two-sample null hypothesis, independently of all other 
possible tests that you might also do on the data. 
 This kind of game drives Bayesian statisticians (like Gelman) crazy, since traditional 
statisticians always complain that Bayesian statistics is too “subjective”, and yet here’s one of 
the many clear cases in traditional statistics where we’re being asked to trust the researcher’s 
word about his or her psychological state. After all, maybe the Chinese teacher actually 
expected that Red and Blue would be the same, so when the means implied otherwise, this 
caused her to look at Red and Blue more carefully. But in that case, the p values of the t test 
are suddenly invalid: the focus on Red and Blue was based on the main ANOVA results, so 
they’re not randomly chosen samples anymore. The p value from an ANOVA doesn’t represent 
this kind of conditional probability, and as we noted earlier, as the number of two-level 
comparisons increases, the Type I error risk goes through the roof. 
 
3.3.2 The simplest safe way: Bonferroni adjustment 
 
 One way to make planned comparisons less suspicious-looking is to lower the alpha level, 
to make it harder to get a Type I error (since a lower alpha means that you need to get a lower 
p value for the result to count as statistically significant). The simplest way to do this is to use 
something called the Bonferroni adjustment or Bonferroni correction, named after the 
Italian mathematician Carlo Emilio Bonferroni (1892-1960). Due to the addition rule of 
probability theory, the probability of getting a combination of independent, non-overlapping 
events is the sum of the individual event probabilities. So if you’re going to do some number 
of multiple comparisons, you can simply divide the alpha level by that number, and only count 
any given p value as significant if it goes below this lowered alpha level. 
 For example, since we want to do three planned comparisons in the colored room 
experiment (Red-Blue, Red-Yellow, Blue-Yellow), we should lower α to (.05)/3 = .0167. That 
is, only if a t test on any of these pairs gets a p value below .0167 (not .05) should we consider 
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it statistically significant. In the case of this fake experiment, we win: the p value for comparing 
Red with Blue is p = .0047, which is still below our adjusted alpha level of .0167 (likewise for 
Blue vs. Yellow, but not for Red vs. Yellow, since their means were identical). 
 Though it is extremely simple to use, the Bonferroni adjustment is very conservative. That 
is, it avoids Type I errors by greatly increasing the risk of Type II errors, so it’s easy to give 
you p > α even though the null hypothesis is actually false. It also ignores the ANOVA itself; 
you can you use the Bonferroni adjustment in any situation where you’re doing multiple 
comparisons. Both of these features can be good things. Regarding the first, if your “planned 
comparisons” are still significant after Bonferroni adjustment, you can convince skeptics that 
there really are pairwise differences. Regarding the second, you can use the Bonferroni 
adjustment beyond ANOVA, for example, when testing a whole bunch of correlations on the 
same data set (though a multiple regression would be a better thing to do there). 
 One shortcoming of this procedure is that it’s not very powerful: if you want to avoid any 
Type I error in all of your comparisons, you may reduce your alpha value too much to catch 
some genuinely significantly different comparisons. To deal with this, Benjamini & Hochberg 
(1995) proposed instead trying to minimize what they called the false discovery rate just in 
the subset of comparisons with p values below the usual alpha level. They proved that you can 
manage this computing p values for all of your comparisons in the usual way (for example, 
using ordinary t tests), ranking them from smallest to largest and numbering them (1 = smallest 
p value, 2 = next-smallest p value, and so on), and then finding the largest rank i where the 
following formula is true: 
 

𝑝𝑝𝑖𝑖 ≤
𝑖𝑖
𝑚𝑚
𝛼𝛼 

 
where m = total number of comparisons, i = ranking number, α = alpha level, and pi = the ith p 
value. Then reject the null hypothesis for all of comparisons up to that largest rank. 
 For example, if you have three comparisons with the p-values .01, .02, .03, and an alpha 
level of .05, only the first p value would be significant by the Bonferroni adjustment, since .05/3 
= .0167. But using the false discovery rate procedure would allow us to conclude that all of the 
comparisons are statistically significant: 
 

. 01 ≤ 1
3

(. 05) = .0167  True 

. 02 ≤ 2
3

(. 05) = .0333  Also true! 

. 03 ≤ 3
3

(. 05) = .05  True again! 
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3.3.3 The most sophisticated way: Post-hoc tests 
 
 But here we have in fact run an ANOVA, and all we want to do is look a bit closer at the 
results, without having to claim that we planned to do all of these extra analyses from the very 
beginning. The best approach here would thus be to do a so-called a post hoc test (“post hoc” 
means “after that”). Post-hoc tests are pretty widely used, and much less controversial and 
problematic than so-called planned comparisons, and less conservative than Bonferonni 
corrections. 
 There are many types of post-hoc tests, since there’s no one right answer to the question 
“How best to balance Type I and Type II errors?” So I’ll just mention three commonly used 
post-hoc tests, and only explain the third one in detail. 
 The oldest post hoc test is Fisher's (P)LSD (“[protected] least significant difference”), 
invented by you-know-who. Like planned comparisons, this basically involves doing a bunch 
of t tests, and like the Bonferroni adjustment, it makes it harder to commit a Type I error, 
though instead of adjusting alpha, it computes pooled variance across all of the samples, not 
just the two being compared. The problem with this is the opposite of the Bonferonni 
adjustment, in that it’s an overly “generous” test, giving a too-high risk of Type I errors. 
 The second oldest of the post hoc tests is Scheffé's test, named after American statistician 
Henry Scheffé (1907-1977), which can look for significant effects in subsets of all your 
samples, not just in two levels at a time (for example, in a factor with levels A, B, C, D, it could 
test if the subset A, B, C shows a significant difference in means). One advantage of this test 
is that it’s very robust to violations of the usual assumptions: it doesn’t matter if the sample 
sizes are different or if they have different variances. However, sort of like the ranked tests 
we’ve discussed in other chapters, this robustness also means that it is very “conservative” (i.e., 
it has a high risk of Type II errors). 
 The third type of post-hoc test seems to be the most commonly used post hoc test today, 
perhaps because it strikes a better balance between Type I and Type II errors: the Tukey (or  
Tukey-Kramer) HSD test (for “honestly significant difference”). You’ve seen the name Tukey 
already; he was the guy who invented the box-and-whiskers plot. Luckily for us, R also has 
built-in base functions for computing it (to run the other two post-hoc tests, you’d need to 
install a special package; e.g., the agricolae package has the functions scheffe.test() and 
LSD.test()). 
 Tukey’s HSD is just a modification of the oldest test, in that it’s “really” a bunch of t tests 
with a modified way of calculating variability. The new thing is that instead of using the 
ordinary t distribution (“Student’s t”), Tukey’s HSD uses a distribution called the Studentized 
range statistic, symbolized q (I guess they were running out of letters), which represents the 
range (maximum minus minimum) of a sample divided by the standard deviation. The output 
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of this process is a set of adjusted p values, one for each cross-level comparison, that you can 
test for significance against your alpha level (e.g., α = .05). 
 The HSD value is calculated using the formula below (again, this is the version for the 
simplest case, where every sample has the same size n). This number represents how big the 
difference must be between two factor level means to count as significant. 
 

Tukey’s HSD value (for equal sample sizes):  𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ �
𝑀𝑀𝑀𝑀𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖

𝑛𝑛
  

        where qcrit is the critical value of q that makes p = α 
 
 The three crucial values are all available in R: you can get n using length(), MSwithin (MSE) 
is what summary(aov()) reports as the Mean Sq for Residuals, and qcrit can be calculated using 
R’s built-in function for quantiles in the Studentized range distribution, called qtukey(1-alpha, 
k, df), where k = number of factor levels in the full ANOVA analysis and df = dfwithin. Putting 
this all together, the computation of the HSD value would be like so: HSD = qtukey(1-alpha, 
k, df)*sqrt(MSE/n). Let’s try it on our color experiment values: 
 
qtukey(1-0.05, 3, 12)*sqrt(1.333/5) 
[1] 1.948089 
 
 Since the difference in Red vs. Blue means is 3 (4-1), which is larger than the HSD value 
(1.95), this post-hoc comparison must be significant (p < .05); likewise for Blue vs. Yellow, 
but not for Red vs. Yellow. 
 However, R makes the job even easier than this: it has a specialized function to give you 
the actual Tukey-test p values directly from your ANOVA model. So here’s a case where you 
do indeed need your aov object, not just the summary of it. The function is called TukeyHSD(), 
and you have to remember to type the letters properly in uppercase and lowercase. 
 For example, with our color experiment, we could use the following R code and get the 
following results: 
 
TukeyHSD(aov(Learning~Color,data=exp1)) 
 

 diff lwr upr p adj 
Red-Blue -3.000000e+00 -4.948332 -1.051668 0.003832 
Yellow-Blue -3.000000e+00 -4.948332 -1.051668 0.003832 
Yellow-Red 9.992007e-16 -1.948332 1.948332 1.000000 

 
 In this output table, “diff” stands for the difference between levels (here, 3, 3, and 0), “lwr” 
and “upr” represent (respectively) the lower and upper bounds of the confidence interval for 
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the Tukey test (R knows that statisticians don’t like to rely just on point estimates), and “p adj” 
stands for the adjusted p value (i.e., adjusted according to Tukey’s test). This last shows that p 
< .05 for both comparisons with Blue, so we can conclude that it is indeed a better color than 
either Red or Yellow. By contrast, the Yellow and Blue means are identical (9.992007e-16 = 
zero), the adjusted p = 1. Notice the upper bound on this particular confidence interval? It’s 
practically the same value (1.948332) that we got when we used qtukey() to compute the 
critical value (1.948089). 
 Just for completeness, we can further confirm that my “manual” calculation of HSD was 
right by plugging in the Red-vs.-Blue p value into my calculation above. And yes, the output 
is practically 3, the actual difference in sample means. 
 
qtukey(1-0.003832, 3, 12)*sqrt(1.333/5) # See what I'm doing here? 
[1] 2.999621 
 
 To report this result, the wise old Chinese teacher would add, after her main ANOVA 
report, that learning in the blue room was significantly better than in the red and yellow rooms 
by a two-tailed Tukey post-hoc test (ps < .01). There are two different significant p values here; 
they just happen to be identical in this particular analysis because the means for the red and 
yellow rooms are identical. 
 
4. Two-way independent-measures ANOVA 
 
 Even if everybody listens to me (ha!) and designs all of their studies so that all of their 
factors are always binary (so that they never have to worry about multiple comparisons or post-
hoc tests), Fisher is still right: it’s best to give Nature a questionnaire, not just ask one question 
at a time. In particular, it’s often crucial to test for an interaction between your factors, and that 
means that we still need to do something like an ANOVA. If we have two factors, it’s a two-
way ANOVA, and if both factors are between-groups, it’s a two-way independent-measures 
ANOVA. 
 In this section I’ll first pound home the importance of testing for interactions, and then 
we’ll see how to actually do it in Excel and ANOVA. Only at the last minute will I update our 
ANOVA math to handle this new kind of situation. 
 
4.1 Why we might want to test for interactions 
 
 I’ve already mentioned some reasons to test for interactions, but let’s make the discussion 
a bit more concrete. 
 If two variables interact, then they aren’t independent (of course). This kind of 
information is often crucial for distinguishing between competing scientific hypotheses. For 
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example, linguists assume that semantics and phonology are totally separate things, processed 
in the mind/brain by totally separate systems. So we predict that they will not show an 
interaction in an ANOVA, if we do the right kind of experiment. 
 For example, let’s say you run a version of the priming experiment I mentioned above, 
but you cross semantics and phonology in the primes (avoiding shared morphemes). This is a 
so-called factorial experiment, testing all possible combinations of our factors. We might 
summarize our experiment as in Table 7. 
 
Table 7. The design of a two-factor factorial priming experiment 
 

Semantics Phonology (same first sound) Prime example Target example 
Related Related cod (kind of fish) CAT 
Related Unrelated dog CAT 
Unrelated Related cot (kind of bed) CAT 
Unrelated Unrelated dig CAT 

 
 Figure 2 shows three possible outcomes of this experiment, where the y-axis represents 
priming (i.e., RT for control condition minus RT for primed condition, so that higher values 
means faster responses for the primed condition). I faked the data with the following R code 
(you can try faking it in Excel too, just for practice). Note the use of R’s base function 
interaction.plot(); check ?interaction.plot for more information on how it works. Actually, 
the code below only creates the leftmost plot; the comments at the end of the code give you a 
hint about how to plot the other two. 
 
par(mfrow=c(1,3)) # I'll plot three graphs side by side 
par(cex=1.1) # Makes the font bigger (since the graphs will be shrunk) 
 
# Leftmost plot 
semphon = data.frame(SemRel=c(rep("Not related",2),rep("Related",2)), 
 PhonRel=rep(c("Not related","Related"),2),Priming = c(0,20,40,60)) 
 
interaction.plot(semphon$SemRel, # Variable on x-axis 
 semphon$PhonRel, # Variable in the legend 
 semphon$Priming, # Variable on y-axis 
 xlab="Semantics", ylab="Priming ms", # Default labels are ugly 
 ylim=c(0,100), # This gives room at the top for the legend 
 legend=F, # Default legend style for interaction.plot is ugly, so I turned it off 
 lwd=2) # Makes the lines thicker (since the graphs will be shrunk) 
 legend("topright",lty=c(1,2),legend=c("Phon not rel","Phon rel")) # Prettier legend 
 
# And likewise for the other two plots: 
# Middle plot: Priming = c(0,40,40,20) 
# Rightmost plot: Priming = c(20,20,40,60) 
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Figure 2. Three possible outcomes from our two-factor factorial experiment 
 
 In the first possible outcome (leftmost plot in Figure 2), there is no interaction: semantic 
relatedness increases priming by 40 ms, whether or not there is also phonological relatedness, 
which in turn increases priming by 20 ms, whether or not there is also semantic relatedness. In 
this situation we know the amount of priming when both are related just by adding the two 
effects: 40 + 20 = 60 ms. Thus this kind of no-interaction model is also called an additive 
model. Only if we get a result like this can we safely preserve the assumption that semantics 
and phonology are processed independently. When this kind of cognitive logic is applied to 
reaction times, as it is here, it is called the method of additive factors (Sternberg, 1998). 
 Technically, of course, a non-significant interaction is still a null result, and as we know, 
in traditional (non-Bayesian) statistics it’s risky to try to interpret a null result, but if the power 
of our test seems pretty strong (if there are large effect sizes for the main effects, and if our 
sample size is pretty big, it’s not crazy to say that the lack of a significant interaction here is at 
least consistent with a linguistic theory where semantics and phonology are processed 
separately). 
 In the other two possible outcomes, however, simply adding up the two factors doesn’t 
give the right results. In order to know what the effect of semantic relatedness is in any specific 
condition, we also have to know whether the prime was also phonologically related. In the 
middle graph the lines actually cross, which is clearly an interaction, but there also seems to be 
an interaction in the rightmost graph, where the two lines have different slopes instead of being 
parallel. 
 While there is only way not to have an interaction (parallel lines in an interaction plot), 
there are many ways to have an interaction, as these latter two graphs show. This is why it’s 
always crucial to make a plot when your statistical analysis reveals a significant interaction, so 
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you can try to figure out what the interaction actually means for your real-life research question: 
the numbers alone don’t give your monkey brain enough information. 
 Note that I used line plots for what are actually categorical data points: in reality there is 
no data “between” semantically unrelated and related, since this is a categorical variable, not a 
continuous variable. To reflect this reality more directly, you could also use a bar plot (a 
separate bar for each of the four values), and this is indeed often done in published papers. 
Nevertheless, researchers (and R’s programmers, who wrote the interaction.plot() function) 
also approve of using lines in interaction plots, since they make the absence vs. presence of 
interactions much easier to see (i.e., parallel vs. not-parallel lines) than bar plots do (where you 
have to look closely at the relative differences in the heights of each subgroup of bars). 
 While users of the method of additive factors hope to maintain the null hypothesis (no 
interaction between supposedly independent factors), you can also test for interactions that 
your scientific hypothesis does predict. This is what Cowart (1997) does in a test of the that-
trace effect (Chomsky & Lasnik, 1977), where English sentences with the complementizer that 
and subject extraction are claimed to be less acceptable. The factorial design, and sample 
sentences, are shown in Table 8. 
 
Table 8. Design of the factorial syntax experiment of Cowart (1997) 
 

Extraction that Example sentences (from Cowart, 1997, p. 165) Prediction 
Subject Present Who was the nurse imagining that _ would find her? Worse 
Subject Absent Who was the nurse imagining ∅ _ would find her? Better 
Object Present Who was the nurse imagining that she would find _? Better 
Object Absent Who was the nurse imagining ∅ she would find _? Better 

 
 The hypothesis thus crucially predicts an interaction between the two factors; whether 
they also show main effects is less important. This kind of design is quite common in theoretical 
syntax, where researchers are actually quite familiar with factorial designs, though they don’t 
always know that this is what they’re using (see Myers, 2009a, 2009b, for discussion, including 
Chinese examples). 
 Another reason why we should care about testing for interactions is to avoid making a 
stupid (but sadly common) mistake. 
 Suppose you have a sociolinguistic theory that says that Venusian culture is so egalitarian 
that men and women process language exactly the same way, unlike sexist Martian culture, 
where men and women process language differently. You run two carefully matched 
experiments, one in Venusian culture and one in Martian culture, and the results clearly show 
that there’s a significant difference in the language processing by men and women on Mars (p 
< .05, using an unpaired t test, let’s say, or a one-way independent-measures ANOVA, which 
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is the same thing), but there’s no significant difference (p > .05) between men and women on 
Venus. Does this support your linguistic theory? 
 Nope, sorry. The problem here is that, as Gelman and Stern (2006) put it in the title of 
their paper, “the difference between ‘significant’ and ‘not significant’ is not itself statistically 
significant”. This mistake is made in the research literature all the time. Nieuwenhuis et al. 
(2011) found that it was particularly common in neuroscience, sad to say. They also point out 
a simple intuitive reason why the logic is flawed. Suppose the “significant” p value for the 
Martian experiment was p = .049 and the “non-significant” p value for the Venusian 
experiment was p = .051: would that convince you that there’s a meaningful difference between 
the languages or the cultures? I hope not! 
 Solution: do a two-way independent-measures ANOVA. Take the data from your Martian 
and Venusian experiments, and combine them, making four cells in one two-way ANOVA 
table, instead of two independent two-cell one-way ANOVA tables. Now we can test for a 
main effect of language/culture, a main effect of gender, and crucially, also an interaction 
between the two. This interaction addresses the question that we really care about: does 
language/culture modulate how gender affects language processing? 
 
4.2 Three colored rooms and two genders 
 
 Interactions sound great! Let’s try a two-way ANOVA, starting, as usual, with Excel. 
 
4.2.1 Three colored rooms and two genders, in Excel 
 
 As I tried to explain at the start of this chapter, to do a two-way independent-measures 
ANOVA in Excel, the tool you need is confusingly called Anova: Two-Factor with 
Replication" (雙因子變異數分析：重複試驗). Remember that by “replication”, Excel means 
that the levels for the “row” factor each have more than one data point (forget about Excel’s 
third type of ANOVA for now, since we’ll save that for the next chapter, when we discuss 
repeated-measures ANOVA). 
 We need some fake data to illustrate this. Hm, where can we get some? Let’s look in 
Gravetter and Wallnau (2004) again. Ah, here’s the example they use to introduce this type of 
ANOVA (on p. 490 in that old edition). Again I’ve kept their numbers (tiny samples, overly 
neat calculations), but I’ve changed the factors to seem more linguisticky. 
 So here’s the wise old Chinese teacher again. While her first experiment taught her 
something about the importance of learning Chinese words in blue rooms, insatiable curiosity 
still burns deeply within her, because it seems that maybe student gender matters too. For 
example, maybe female students learn words better than male students (another main effect), 
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and/or maybe female students learn words best in blue rooms, but for male students, room color 
doesn’t matter at all (an interaction). 
 So the wise old Chinese teacher decides to run a new factorial experiment that crosses 
room color with student gender. Her exciting (i.e., fake and pirated) results are shown in Table 
9, arranged the way Excel likes them (also available in the file ColoredRooms.txt). Note that 
the thick cell borders mark out the four ANOVA cells, defined by this two-way ANOVA 
crossing two binary factors; the thin-bordered cells are Excel cells. Note how the room color 
factor defines the columns, while the gender factor defines the rows, even though the gender 
levels are labeled in just one cell each, while the actual measurements within each ANOVA 
cell appear in ranges of multiple rows (which is why Excel calls this type of ANOVA “with 
replication”). 
 
Table 9. The effects of room color and student gender on word learning (Excel style) 
 

 Red Blue Yellow 
Female 3 2 9 
 1 5 9 
 1 9 13 
 6 7 6 
 4 7 8 
Male 0 3 0 
 2 8 0 
 0 3 0 
 0 3 5 
 3 3 0 

 
 To analyze this in Excel, you have to tell the Analysis ToolPak tool how many data points 
there are in each cell. Note that this is only a limitation of Excel, since this kind of ANOVA 
doesn’t actually require the cells to have the same number of observations, though like t tests 
and one-way ANOVA, unequal sample sizes make the other test assumptions more important 
(normality and homoscedicity). 
 Select the whole range, including the row and column labels, though for some reason these 
labels only appear in Excel’s descriptive statistics tables (counts, means, and so on for each 
cell), but not in the ANOVA table. In the case of this new experiment, the ANOVA table 
appears as in Table 10. 
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Table 10. Excel’s results for two-way independent-measures ANOVA for new experiment 
 

ANOVA       
變源 SS 自由度 MS F P-值 臨界值 
樣本 120 1 120 24 5.37E-05 4.259675 
欄 60 2 30 6 0.007707 3.402832 
交互作用 60 2 30 6 0.007707 3.402832 
組內 120 24 5    
總和 360 29     

 
 Since Excel doesn’t show the labels in this table, you have to remember that 樣本 
(sample) represents the “row” factor (Female vs. Male) and 欄 represents the “column” factor 
(Red vs. Blue vs. Yellow). The interaction is labeled “交互作用”. 
 Based on these results, the Chinese teacher has three things to report, so she could write 
something like this: “There was a significant main effect of gender (F(1, 24) = 24, MSE = 5, p 
< .05), a significant main effect of room color (F(2, 24) = 6, MSE = 5, p < .05), and a significant 
interaction (F(2, 24) = 6, MSE = 5, p < .05).” Do you see where I got all these values from? If 
not, keep looking; it’s pretty easy. She should also report the six cell means and standard 
deviations, which you can compute from the raw data (the means are also in Excel’s descriptive 
statistics table). 
 As usual with interactions, a plot would help make the results a lot more clear. Excel’s 
descriptive statistics tables give you the cell means that you need to plot, though they’re not 
arranged in a convenient way. So let’s move them around to make a little table as shown in 
Table 11, and then use them to make the bar plot in Figure 3. 
 
Table 11. Cell means arranged for plotting in Excel 
 
 Red Blue Yellow 
Female 3 6 9 
Male 1 4 1 
 



Ch. 8: Introduction to ANOVA 
 

29 

 
Figure 3. Results of new experiment (Excel style bar plot) 
 
 Now it’s a bit clearer what each of the ANOVA results mean. To see the main effect of 
color, you have to imagine the average score for each color, averaging across the black and 
white pair of bars (roughly at the midpoint between the tops of both bars, which will work if 
the distributions aren’t too skewed). This shows that red is overall the worst color, whereas 
blue and yellow are about the same. In fact, they’re exactly the same, as shown by Excel’s 
Total (總和) summary statistics table; the overall color means (ignoring gender) are 2, 5, and 
5, for Red, Blue, and Yellow, respectively. 
 Similarly, to see the main effect of gender, you have to imagine averaging across the white 
bars for males and across the black bars for females; the mean female score seems to be higher. 
You can get the actual numbers from Excel’s other descriptive statistics tables, in cell in the 
total (總和) column of the mean (平均) row, which shows that the overall Female mean is 6, 
while the overall Male mean is only 2. 
 As for the interaction, the pattern seems to be that yellow is the best color for women, 
whereas for the men the best color is still blue (maybe Experiment 1 only had men in it?). 
 
4.2.2 Three colored rooms and two genders, in R 
 
 Of course, we can also do the same ANOVA in R, using the aov() function. As usual, R 
wants the data arranged in columns, with separate columns for the dependent variable (the 
Learning scores) and for the two independent variables (Gender, with levels Female and Male; 
Color, with levels Red, Blue, and Yellow). To save you typing and loading, you can just run 
the following code to create the data frame exp2 (for Experiment 2). 
 
 
 

0

1

2

3

4

5

6

7

8

9

10

Red Blue Yellow

N
um

be
r o

f l
ea

rn
ed

 w
or

ds

Female

Male



Ch. 8: Introduction to ANOVA 
 

30 

exp2 = data.frame(Gender = c(rep("Female",15),rep("Male",15)),  # F+M 
 Color = rep(c(rep("Red",5), rep("Blue",5), rep("Yellow",5)),2),  # RBY+RBY 
 Learning=c(c(3,1,1,6,4), c(2,5,9,7,7), c(9,9,13,6,8),  # F: RBY 
           c(0,2,0,0,3), c(3,8,3,3,3), c(0,0,0,5,0)))   # M: RBY 
 
head(exp2) # See what it looks like 
 

 Gender Color Learning 
1 Female Red 3 
2 Female Red 1 
3 Female Red 1 
4 Female Red 6 
5 Female Red 4 
6 Female Blue 2 

 
 Then we use the following commands to replicate Excel’s results. As before, I create and 
named the aov object first, since we’ll be doing a couple further things with it. The * symbol 
means that this model tests not just the main effects of Gender and Color, but also the 
interaction between these two factors. As we’ll see shortly, it’s not a coincidence that this 
symbol is the same as R’s symbol for multiplication. If we had used + instead of *, the analysis 
would only give the two main effects, because we’d be telling R that we wanted an additive 
model, ignoring any possible interaction. Again, it’s not a coincidence that + looks like an 
arithmetical symbol. 
 
colorgender.aov = aov(Learning ~ Gender * Color, data = exp2) 
summary(colorgender.aov) 
 

 Df Sum Sq Mean Sq F value Pr(>F)  
Gender 1 120 120 24 5.37e-05 *** 
Color          1 60 30 6 0.00771 ** 
Gender:Color 2 69 30 6 0.00771 ** 
Residuals 24 120 5    

 
 Go back and compare this with Excel’s ANOVA table, shown earlier in Table 10. It’s the 
same table, isn’t it? It is, except for the usual differences in terminology, and the fact that Excel 
also gives values for estimating effect size. Specifically, Excel also gives the critical values for 
computing confidence intervals, and the totals for computing how much of the data variance is 
captured by the model; R can give you this information as well, but you have to ask for it (as 
I’ll explain in the next chapter). 
 Note also that R indicates the interaction with a colon (:) rather than a star (*). That’s 
because a star in a model says that we want to test not just the interaction, but also the main 
effects; the colon symbolizes the actual interaction itself. 
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 Am I lying? There’s an easy way to find out: if what I say is true, then in R’s model 
formula notation, A*B must be synonymous with A+B+A:B. So if we run the following 
command, we should get exactly the same results as above. Try it and see! 
 
summary(aov(Learning ~ Gender + Color + Gender:Color, data = exp2)) 
 
 Because of R’s formula notation, we have a great deal of power to create all sorts of other 
types of ANOVA models, far beyond anything that Excel can do. Below, notice the use of the 
parentheses and various arithmetical symbols: not just * and +, but - and the power symbol ^ 
as well. You can try out the first two yourself, using Gender and Color for the factors A and B; 
the other ones you’ll just have to imagine for now (or make up your own fake data). 
 
aov(Y~A+B) # Test only main effects in a two-way ANOVA 
aov(Y~A*B-A:B) # Test only main effects in a two-way ANOVA (same as above) 
aov(Y~A*B*C) # Three-way ANOVA 
aov(Y~(A+B+C)^2) # Only test two-way interactions in a three-way ANOVA 
aov(Y~A*(B+C)) # Test A, B, C, A:B and A:C, but not B:C or A:B:C 
 
 But regarding this power, remember Spiderman’s words of wisdom again. There are two 
competing forces to consider when choosing a statistical model. On the one hand, the most 
objective approach is to test all of the factors and all interactions implied by your research 
design (a so-called maximal model), because if you drop out some factors arbitrarily, you 
might be accused of cherry-picking just certain effects. But on the other hand, you should try 
to keep your analysis as simple as possible: two-way interactions may have a reasonable real-
life interpretation, but three-way and higher interactions quickly get very confusing. This 
balance between try-everything vs. keep-it-simple will become really important when we get 
to multiple regression. 
 Anyway, the R analysis confirms that we have a significant interaction, so we need to plot 
it to get a sense of what it means. We could make one by hand, computing the means and then 
plugging them into barplot() or interaction.plot(), but there’s a much easier way to do this, if 
we install another package. We’ll be using this package in later chapters anyway. 
 The package is called effects (Fox, 2003; Fox & Hong, 2009; that’s the same Fox who 
created the user-friendly Rcmdr package mentioned earlier in this book). Please install it, and 
then run the following little bit of code. This will create the colorful plot in Figure 4 (the colors 
come by default). This isn’t necessarily something you’d want to put into a public report (a bar 
plot might be more familiar-looking to your readers), but an interaction plot like this is certainly 
useful for you, as a researcher, to get a feeling for your own results. 
 
library(effects) # You have to install it first 
plot(allEffects(aov(Learning ~ Gender * Color, data = exp2))) 
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Figure 4. Interaction plot for Learning and Gender 
 
 What are those vertical red lines going through each black dot? Why, they’re 95% 
confidence intervals for the ANOVA model, which give you a general impression of the 
noisiness of the data and the statistical significance of the model (as I just said, we’ll explain a 
bit more about how they’re calculated in the next chapter). 
 Since Color is still a multi-level factor in this new experiment, we might want to know if 
its levels are significantly different from each other. Just as with the one-way ANOVA in the 
first experiment, we can run a Tukey test to find out: 
 
TukeyHSD(colorgender.aov) 
 
 The text output for this is very large, so I’ll just let you look at it yourself. Notice that it 
consists of three tables: one looking at the difference between the two genders (p = 5.37e-05), 
one looking at the differences between pairs of colors (p = 0.0164705 for Red-Blue and for 
Yellow-Red, so this time Yellow stands out as best for learning), and one comparing each of 
the six ANOVA cells (defined by the 2 × 3 design) with the other cells in its row or column 
(e.g., Male:Blue is compared with Female:Blue, Male:Red and Male:Yellow, but with no other 
cell). The significant comparisons in this third table are Male:Red-Female:Blue, Male:Yellow-
Female:Blue, and Female:Yellow-Male:Blue (all p = 0.0185503), Female:Yellow-Female:Red 
(p = 0.0034418), and Female:Yellow-Male:Red andMale:Yellow-Female:Yellow (both p = 
0.0001055). 
 That’s a lot of complicated data, and it’s not clear what practical linguistic information 
we really learn from all of it. Probably for this reason, post-hoc tests aren’t much used with 
anything but one-way ANOVA models. 
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4.3 More about the math behind independent-measures two-way ANOVA 
 
 A two-way ANOVA gives us three results for the price of one: it tests the significance of 
each of the two main effects, and also tests their interaction. How does it manage to do this? 
 A hint comes from R’s formula syntax, and the notion of additive model (i.e., a model 
without an interaction). Because of the deep connection between ANOVA and regression, an 
ANOVA model actually represents a kind of linear equation. Schematically, an additive 
model looks something like this: 
 
A two-factor additive ANOVA: 
 Dependent variable  =  Factor A  +  Factor B  +  Error 
 
 If the mode includes an interaction, then the linear equation also includes the product (乘
積) of the two factors: 
 
A full two-way ANOVA: 
 Dependent variable  =  Factor A  +  Factor B  +  Factor A × Factor B  + Error 
 
 That × symbol isn’t a metaphor: computing the interaction literally involves multiplying 
the two factors values together. I’ll explain exactly how this works when we get to the multiple 
regression chapter. 
 A linear equation like this involves the same kind of partitioning of variance that we 
saw in the simpler ANOVA formulas: 
 
Total variability = Variability A + Variability B + Interaction variability + Error 
 
 Mathematically, the partitioning means that for two-way independent-measures ANOVA, 
the SS values are as follows: 
 
Two-way ANOVA SStotal: SStotal = SSbetween + SSerror = SSA + SSB + SSA×B + SSerror 
 
 SStotal and SSbetween are computed exactly the same way as for the one-way ANOVA, and 
SSA and SSB are computed the same way as SSbetween, but only relative to each factor (A and B). 
This leaves SSA×B as what’s left over in SSbetween after you subtract away SSA and SSB. 
 As with any ANOVA, the ultimate goal is to compute the F ratios for A, B, and A×B, each 
relative to SSerror, which, in any independent-measures ANOVA, is the same as SSwithin. 
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 And that’s good enough for now! We’ll come back to these concepts in a bit more 
computational detail in the other ANOVA chapter and the multiple regression chapters, since 
they’ll have practical uses when we estimate effect size and compute regression interactions. 
 
5. Non-parametric alternatives to ANOVA 
 
 Did you notice anything missing in this chapter? I’ll give you hint: look at the title of this 
section. Well, this section is going to be very short, because even though ranked correlation 
(Spearman correlation) and heteroscedastic t tests (Welch’s test) are relatively widely used, in 
the world of ANOVA (or ANOVA-like data sets), people don’t worry so much about violations 
of the usual parametric assumptions. (This relaxed attitude is unfortunately not the case with 
repeated-measures ANOVA, so we’ll need to spend more time in the next chapter dealing with 
a special assumption of this kind of ANOVA.) 
 Just like the ordinary (homoscedastic) unpaired t test, independent-measures ANOVA 
assumes that all of the cell samples come from population(s) with the same variance. Like all 
parametric tests, ANOVA is robust to violations of assumptions like this, especially if the 
overall sample size is not too tiny and each cell has (almost) the same number of data points. 
A rule of thumb that I’ve seen (I can’t remember where!) is that you don’t really have to worry 
about heteroscedasticity in ANOVA unless maximum cell variance is no more than four times 
larger than the minimum cell variance. In mostly normal data, which is what you get from most 
types of linguistics studies, this problem just isn’t going to arise, though you might worry a bit 
more if you’re running an ANOVA for a lexical analysis (e.g., of a corpus or dictionary), since 
Zipf’s law can create some pretty extreme skew (but you should be lognorming or using 
categorical tests wherever you can anyway). 
 How could we find out if our multi-level factor shows heteroscedacity? One method is to 
something called Levene's test (proposed by an otherwise unexciting guy named Howard 
Levene in 1960). This tests the null hypothesis that the populations have the same variance (i.e., 
are homoscedastic). You can run this test in R, although to do so, you first have to install the 
car package; the name stands for “companion to applied regression”, part of the title of the 
book by Fox and Weisberg (2011) (yes, that’s the same Fox again). As with the effects package, 
we’ll be using the car package later in this book anyway. 
 The car package function is called leveneTest(formula, data), and as shown, it expects 
you to enter a model formula and the data frame that the model is applied to. So in the case of 
our one-way independent-measures ANOVA for the first experiment, we’d do this: 
 
library(car) # Don't forget to install it first! 
leveneTest(Learning~Color, data=exp1) 
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Levene’s Test for Homogeneity of Variance (center = median) 
 Df F value Pr(>F) 

group 2 0 1 
 12   

Warning message: 
In leveneTest.default(y = y, group = group, ...) : group coerced to factor. 
 
 So p = 1: can’t get any more non-significant than that. I guess we don’t have to worry 
about our data being too heteroscedastic here. (By the way, the warning is just complaining 
that exp1$Color is technically a character vector, not a factor; aov() silently converts it to a 
factor first, but leveneTest() tells us what it’s doing. R’s distinction between ordinary vectors 
and factors will become crucial in the next chapter.) 
 Since an unpaired t test is just a special case of a one-way independent-measures ANOVA, 
you might be curious how the results of Levene’s test works on the BoysGirls.txt data set we 
played with in the t test chapter. Try it! 
 
# Reload data 
bg = read.table("BoysGirls.txt",T) 
study1 = subset(bg, bg$Study==1) 
boys1 = study1$Measure[study1$Gender=="Boy"] 
girls1 = study1$Measure[study1$Gender=="Girl"] 
 
# Compare the two tests 
var.test(boys1,girls1) # p = 0.339 
leveneTest(Measure~Gender, data=bg) # 0.7533 
 
 Even though the variance test and Levene’s test both rely on the F distribution, they don’t 
work exactly the same way: the variance test gets the F value by dividing one sample variance 
by the other, while Levene’s test does so by running a one-way ANOVA on the absolute values 
of the difference between each data point and the mean of the cell it comes from. That’s why 
the two tests give different p values here, even though here both show p > .05, so we can assume 
that this data set doesn’t violate the homoscedacity assumption. 
 The fact that Levene’s test p value is larger for the boys and girls than the variance test p 
value suggests that it’s hard to violate heteroscedacity in ANOVA. To demonstrate this further, 
let’s try faking some data where the cells vary a lot in variance, by modifying our Experiment 
1 data. Even with the ridiculously different (and tiny) samples below, we still don’t get a 
significant result in Levene’s test: 
 
exp1.het = data.frame(Color = c(rep("Red",5), rep("Blue",5), rep("Yellow",5)), 
 Learning=c(c(1,1,1,1,1),c(1,1,1000,1,1),c(1,1,1,1,1))) 
leveneTest(Learning~Color, data = exp1.het) # p = 0.3966 
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 Supposing we did come across a significant violation of ANOVA’s homoscedasticity 
assumption anyway. What are our options (besides not worrying about it, which most people 
do)? For a one-way independent-measures ANOVA, we could use a Welch ANOVA (one-
way analysis of means not assuming equal variances), a generalization of Welch’s t test, 
which you can run using R’s base function oneway.test(), with the var.equal argument left at 
its default setting of FALSE. For example, compare the two ANOVA analyses of the 
homoscedastic exp1 data (try it!). The p value for the Welch ANOVA is higher than that for 
the ordinary ANOVA, since it makes fewer assumptions, its power is less, and thus its Type II 
error rate is higher. 
 
summary(aov(Learning~Color, data = exp1)) # p = 0.00177 
oneway.test(Learning~Color, data = exp1) # p = 0.007043 
 
 Another option would be used the ranking-based Kruskal-Wallis test (named after 
American statisticians William Kruskal [1919-2005] and W. Allen Wallis [1912-1998]). As a 
generalization of the Mann-Whitney U test that we saw in the t test chapter, it ignores 
everything about the data except the ranks, so violations of homoscedasticity and normality 
don’t matter. But as you can see by running the code below, its Type II error rate is even higher 
than the Welch ANOVA (note the higher p value): 
 
kruskal.test(Learning~Color, data = exp1) # p = 0.01133 
 
 Perhaps the most sophisticated option would be to run a regression with something called 
White's adjustment (proposed by an American economist named Halbert White [1950-2012]). 
This is a general trick that allows you to partially undo the bad effects of heteroscedacity, not 
just in an ANOVA, but also in a regression or related models. You can run it using the Anova() 
function in the car package (so remember to load this package first, if it’s not already running), 
with the argument white.adjust set to TRUE. Note how close the p value is to that given by 
the ordinary ANOVA, showing that this method avoids Type II errors better than the others I 
mentioned. 
 
library(car) # Only if it's not already running 
Anova(aov(Learning~Color, data = exp1), white.adjust=TRUE) # p = 0.004874 
 
6. Conclusions 
 
 You’ve always wondered what ANOVA was, and now you know! It stands for “analysis 
of variance”, because the genius idea at the heart of it is to see all data in terms of variation, 
and to seek patterns in it by partitioning the variance into “interesting” (associated with the 
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fixed factors in your model) and “boring” (the residuals, or the noise that your model can’t 
explain). In this chapter we focused on the simplest kind of ANOVA, namely independent-
measures ANOVA, where all of your data points are independent of all others (rather than 
being grouped by units, like speakers or words, as in a repeated-measures ANOVA, which 
we’ll discuss in the next chapter). In other words, the independent-measures ANOVA is a 
generalization of the unpaired t test. So like t tests, the goal of an ANOVA is to test the null 
hypothesis that the sample means (i.e., the means of the cells defined by your factors and their 
levels) are the same (i.e., are sampled from populations with the same means). What’s new is 
that we can now test any number of samples at the same time. Excel comes with built-in tools 
for running one-way independent-measures ANOVA (with samples of any size), where there’s 
just one factor with two or more levels, and for running two-way independent-measures 
ANOVA (with samples of the same size), where there are two factors, each with two or more 
levels, and we cross them. In the latter type of model, the ANOVA gives us three results: an 
analysis of the first factor as a main effect, the same for the second factor, and an analysis of 
their interaction (which can be especially useful in linguistics). R is much more powerful than 
Excel, allowing us to run ANOVA with any cell sizes, any number of factors, whether crossed 
completely or only partially (including additive models, which don’t bother testing for an 
interaction). Special R functions can also help us compare levels within a multi-level factor 
(e.g., Tukey’s post-hoc test) or analyze factorial data where assumptions about equal variance 
or normality are false. 
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