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1. Introduction 
 
 You probably already know most of the stuff in this chapter, even though you may not 
know that you know it. That’s why the chapter is named the way it’s named: what we’ll mostly 
be doing is formalizing familiar, intuitive ideas in mathematical terms. 
 Basically, the chapter discusses five closely related concepts that form the heart (or at 
least the liver or spleen) of statistics. First, data are (by the way, usually I will treat the word 
“data” as a plural count noun, but don’t get confused if I sometimes treat it as a singular mass 
noun, because most English speakers are confused about this too).... Let me start over. The first 
basic concept is that data are distributed across some scale, forming nominal or quantitative 
distributions (分配) of various shapes. This is statistical concept number one, because if data 
were always identical, forming no distributions, there would be no need for statistics at all, and 
because by formalizing the idea of a “distribution”, statistics turns an intimidating mess of data 
into a well-defined mathematical entity that we can actually tame and analyze. 
 Second and third, you can quantify the “most typical” part of a data distribution (e.g., 
where most of the data lie along the scale) in terms of an average, and you can quantify how 
different the data can be across a distribution in terms of variability. Together, the average and 
variability tell you almost everything you need to know about a distribution, making it much 
easier to analyze. 
 Fourth, we can rescale any distribution so that its data points can be compared with those 
in a totally different distribution. This trick has a lot of practical uses, from scoring student 
exams to calculating statistical significance. 
 Finally, the most common distribution (in linguistics and the “real world” too) is the 
famous bell curve, which is so common, in fact, that it is normally called the normal 
distribution. The math of this distribution is very well understood (I mean by mathematicians), 
and because most real-life data are normally distributed, it is straightforward to use the 
rescaling trick to take our real-life data points and fit them to an ideal normal distribution, and 
then use the well-understood math of the normal distribution to estimate all sorts of useful 
things about our real-life data. The normal distribution is so useful that both Excel and R have 
lots of built-in functions for working with it. We’ll discuss some of the most fundamental ones 
in this chapter, but later on we’ll see that t tests, ANOVA, linear regression and many other 
famous statistical things are built on the normal distribution too. 
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 So as I said, there’s nothing in this chapter that you don’t already know. You know that 
data aren’t all the same, you have intuitions about averages and variability, you’ve done 
rescaling (like converting miles to kilometers), you know what the bell curve looks like, and 
you’re familiar with the idea that idealized mathematical models can help solve real-world 
problems (it’s true that 2 + 3 = 5 whether you’re counting apples, languages, verbs, or 
phonemes). All you might not know is how to do all this stuff in Excel and R, and what the 
underlying math looks like. So take a deep breath and let’s get into the nitty-gritty. 
 
2. Distributions 
 
 Once upon a time I paid a bunch of Chinese speakers to listen to or read a bunch of Chinese 
syllables or characters or words or something, and press a button on a computer whenever they 
had made some decision about them (maybe about whether or not they were real words - I 
honestly don’t remember the details anymore). The result was a set of reaction times (RT), 
measuring the time in milliseconds (ms, one-thousands of a second, so 1000 ms = 1 sec). Then 
I selected (again, I don’t remember exactly how) some of these RTs and put them into the file 
RTdat.txt (on the statistics resources page). 
 So this is a genuine linguistic data set. Let’s see what its distribution looks like, what the 
average is, and what the variability is like. 
 
2.1 The shape of distributions: Histograms 
 
 Yes, we’re going to do this both in Excel and in R. This will feel like pure practice at first, 
but pretty soon you’ll see how we can use this information to draw interesting linguistic 
conclusions and to make some practical research decisions. 
 
2.1.1 Histograms in Excel 
 
 Let’s start with Excel. The first thing to do, of course, is to get RTdat.txt in there; again, 
copy/pasting from your web browser or saving and opening the file within Excel both work 
fine (to follow along in this chapter, put it into column A like I did). Notice that unlike the 
“Jabberwocky” file, this is a numerical vector with its name (RT) at the top. It’s also easy to 
see by scrolling to the end that there are 958 data points (since the last number is in cell A959, 
and cell A1 has “RT” in it). Just eyeballing the numbers, you can see that most of them have 
three digits, and it looks like there are no two-digit numbers in there (I’m not wasting your 
time; it’s always a good idea to get an intuitive feeling for your data before starting the fancy 
stuff). This is typical for reaction times in simple linguistic tasks: people tend to take 
somewhere between 1/2 second to 1-plus-a-little second to respond. Compare this with the 
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simpler task of hitting the brakes as soon as you notice the car stopping ahead of you, which 
takes less time to do; in language processing, you also have to process language, not just look 
and react. 
 How can we get a clearer sense about how these RTs are distributed? We’ve already faced 
this kind of question in chapter 2, when we studied “Jabberwocky”. In that case we had a finite 
set of discrete categories (word types), so all we had to do was to count how many tokens there 
were for each type, creating a frequency table. This logic works for other cases too. For 
example, if there aren’t too many different types of items (as with a nominal scale, or a 
quantitative scale that counts by 10s or something), then we could just make frequency tables 
like those in Table 1. We could do the same sort of thing if our data were on an ordinal scale, 
like acceptability judgments on a 7-point Likert scale, counting how many 1 (“impossible”) 
judgments there were, how many 7 (“perfect”) responses, and likewise for the five choices in 
between. 
 
Table 1. Two frequency tables. 
 

Word types Count  Reaction times Count 
nouns 234  623 ms 1 
verbs 109  657 ms 1 
adjectives 52  680 ms 1 
   692 ms 2 

 
 But with continuous values, like the reaction times we have here, it doesn’t really make 
sense to look at the raw frequencies, since probably each precise measurement was observed 
only once at most. For example, type =COUNTIF(A:A,C1) into cell B1, and then type 
whatever number you want into cell C1: most of the time you won’t get a count above 1. 
 The most common solution to this problem is to divide the continuous scale into a set of 
class intervals (or bins, separated by breaks), and then count how many data points fall into 
each bin. This gives us a grouped frequency distribution, like in Table 2. (How do we choose 
how many bins to use or where to put the breaks? It’s kind of arbitrary, but the goal is to 
maximize how much we can learn about the “real” distribution shape.) 
 
Table 2. A grouped frequency distribution. 
 

Reaction times   Reaction times  
601-625 ms 1  601-650 ms 1 
626-650 ms 0 ... or ... 651-700 ms 4 
651-675 ms 1  701-750 ms 1 
676-700 ms 3    
701-725 ms 1    
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 As usual, to get an intuitive feeling for a grouped frequency distribution, the best way is 
to plot it. As we’ve already seen, a plot of a frequency distribution is called a histogram (直
方圖、矩形圖). If you’re wondering about the weird English name, people aren’t sure where 
it comes from (maybe from the Greek word for “mast” [桅杆], maybe from the English word 
“history”). All that’s certain is that histograms were invented by one of the most important 
early statisticians, a British guy named Karl Pearson (1857-1936). He invented many other 
basic statistical concepts and tools too, as we’ll see throughout the first half of this book. 
 Do you want to try making a histogram of the RTs by hand? Me neither. Let’s make Excel 
do it! 
 While Excel has a lot of cell functions for statistics (like =RAND() and =AVERAGE(), 
and you can see them all by clicking on the fx button), the easiest way to do most statistics in 
Excel, including histograms, is to turn on a package called the Analysis ToolPak (分析工具

箱). If you have Excel, it’s already on your computer (no need to download it as you do for a 
non-base package in R), but you need to turn it on for your first use. Its precise location in the 
menu system varies across different Excel versions; in Excel 2007 or later, it is in the Data (資
料) section. If you don’t see it, you need to load it by looking wherever your version of Excel 
manages the Add-ins (增益集). For example, in Excel 2007, you click the Office Button (upper 
left corner), click the Excel Options (選項) button at the bottom, then click Add-ins (增益集) 
at the left, select Excel Add-ins (Excel 增益集) at the bottom and click Go (執行), and finally 
click the checkbox for Analysis ToolPak [分析工具箱]. (The “VBA” version allows you to 
include fancy statistical functions in those macros that I kept trying not to mention in chapter 
2; if you already know Visual Basic for Applications, you might find this useful, but we won’t 
use macros in this book.) As usual with Analysis ToolPak tools, you need to select the precise 
ranges; unlike cell functions, you can’t select the whole column, or else running the TookPak 
will give you an error message. 
 Got it? No? Well, go search for help on the internet then. (Like I keep saying, it’s so much 
easier to explain how to do things in R.) Once the Analysis ToolPak appears in your menu, 
you’re ready to make histograms. Yay! 
 Click the Analysis ToolPak (分析工具箱) menu item. This will open a new window 
listing a bunch of statistical things. (If you think the order of items doesn’t make sense in 
Chinese, this is because they are actually alphabetized by the original English names, so the 
first item is a kind of ANOVA, which we’ll discuss several chapters from now, and the last 
item is something called a z test, which relates to the z scores discussed later in this chapter.) 
 Scroll down until you see Histogram (直方圖). Select it, click OK (確定), and you’ll get 
a new pop-up window asking you to enter your data (instead of typing in the range, you can 
click the button to the right of the white bar and use the mouse to select all of column A). But 
then it also asks you to include a column (or row) of numbers representing the breaks for the 
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bins組界範圍 (B). What do we put in there? We have to think about this first, so let’s close 
the Analysis window again and think. 
 As I said, the choice of histogram bins is arbitrary, but maybe ten is a reasonable number 
(since we have ten fingers, right?). To find break points that divide the range of actual RTs into 
ten equal bins, we could first find the minimum RT with =MIN(A:A), the maximum with 
=MAX(A:A), and then compute approximately 1/10 of this with =ROUND((MAX(A:A)-
MIN(A:A))/10,0). In our case, we get a minimum of 426 ms, a maximum of 1923 ms, with 10 
intervals of about 150 ms each. So to generate the actual bin breaks required by Excel’s 
histogram tool, we type the word “Bins” into cell D1 (I’ll explain why shortly), type=MIN(A:A) 
into cell D2, type the following command into cell D3, then drag it down (which repeatedly 
adds the interval size) until we go beyond the highest RT value. 
 
=D2+ROUND((MAX(A:A)-MIN(A:A))/10,0) 
 
 Now we open up the Histogram tool again, select the data, click the “Labels” checkbox, 
and use the mouse to the select the range in the spreadsheet with the bin breaks we just created. 
Note that we’re also asked if there is a label at the top of our list of bins, in case they mean 
something special that should be mentioned in the output; in our case, we put “Bins” in there, 
remember? We did that because we have that “RT” label on the top of the RTs, and Excel 
expects data and bins to either both have labels or both not have labels, and this way makes it 
easier to select the data just by selecting all of column A. 
 Make sure you click the checkbox next to Chart Output (圖表輸出) to get a histogram 
(not just a frequency table). You also have to decide where you want the results to appear: I 
prefer to put them in the current spreadsheet (its upper left corner will be put in the cell you 
click), so I can see the data and graph right next to each other. 
 All these steps may sound confusing when written out like this, but since Excel has a 
visually based graphical user interface, it is actually pretty easy to do in real life. 
 

 
Figure 1. Histogram of RTs in Excel 
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 When all is ready, click OK. The result is both a frequency table that shows how many 
data items fall into each bin and a bar plot of this same information: the histogram itself. As 
usual, Excel’s graphing defaults are not the best; in this case, by default the bars appear 
separated, even though they are actually supposed to represent intervals splitting up a 
continuous range of values. So I had to poke around Excel’s menus to adjust the appearance of 
my histogram until it turned into Figure 1. Note that I got rid of Excel’s useless Other (其他) 
category by clicking on the graphic window, which activates the data ranges in the spreadsheet 
used to make it, and then I dragged the lower right corner of these ranges upward so that the 
last empty row wasn’t included; this automatically updated the appearance of the graph, as is 
always the case when you edit (or change the selection for) the data that lie behind an Excel 
graph. 
 What do we learn from this histogram? A whole bunch of things: most RTs are around 
the peak of 726 ms, with the lower (faster) and higher (slower) RTs spreading out into thin 
tails on the left and right (yes, “tail” is a genuine technical term), down to a minimum around 
426 ms and up to a maximum around 1926 ms, and the whole distribution isn’t symmetrical, 
with the tail spreading out further on the right (around 1200 ms above the peak) than on the 
left (around 300 ms below the peak). We’ll come back to all of these observations later. 
 
2.1.2 Histograms in R 
 
 But first let’s just do this all over again in R. Step one is to import the data. Since it’s not 
a character vector but a named numeric vector, with the label (or header) “RT” at the top, this 
time the data file is in the perfect format for a data frame. I mentioned in chapter 2 that data 
frames are the most useful sort of data object in R (unless you prefer tidyverse’s tibbles), and 
if you copy/paste your data from Excel into a text file, your file will be tab-delimited (columns 
separated by tabs, as if produced by the tab key [製表鍵], AKA the “tabulator key”). 
 
RTdat = read.delim("RTdat.txt") # Assumes headers by default 
 
 You can see what’s in there by using the head() function (for the first six rows): 
 
head(RTdat) 
 RT 

1 650 
2 569 
3 581 
4 541 
5 617 
6 765 
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 As we saw in chapter 2, for categorical data like the “Jabberwocky” word frequencies, R 
has a special function for creating frequency tables: table(). Similarly, R also has a built-in 
histogram-making function, hist(), that makes Excel’s Analysis ToolPak look like an amateur: 
 
hist(RTdat$RT) # Creates Figure 2 

 
Figure 2. Histogram of RTs in R 
 
 Notice that the hist() function chooses the bins automatically (though you can change 
them with the argument breaks, if you want). It also automatically draws it in the proper way, 
with the bars stuck together to show that they divide up a continuous range of values. Of course 
we can do a bit more work to make it even prettier. For example, to put nicer-looking labels in 
the histogram, we can use some of the hist() function’s other arguments (try it!): 
 
hist(RTdat$RT, 
 main = "My lovely histogram",   # Main title 
 xlab = "Reaction times",    # x-axis label 
 ylab = "Frequency of reaction times") # y-axis label 
 
 In chapter 2 I mentioned that many R users prefer to make their graphs using the non-base 
ggplot2 package. As an example of why this package is appealing, it contains the function 
qplot() (for “quick plot”) that makes histograms by default (cf. R’s base plot() function, which 
makes scatterplots by default). Try it (and note that you also get a friendly suggestion about 
how to make your plot better, if you want): 
 
library(ggplot2) # Remember that you only need to do this once per R session 
qplot(RTdat$RT) 
 
`stat_bin()` using `bins = 30`. Pick better value with 
`binwidth`. 
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 Like plot(), the qplot() function is also sensitive to your data type (though it has different 
default behavior), so if you use it on a categorical variable, e.g., the poem in 
Jabberwocky_OnlyWords.txt, it will plot the frequencies for each category (here, each word 
type, in alphabetical order). Try it (though there are too many words for them to be readable 
along the x-axis): 
 
Jabberwocky = read.delim("Jabberwocky_OnlyWords.txt") 
head(Jabberwocky) # A data frame, with the character vector called "jabberwocky" 
qplot(Jabberwocky$jabberwocky) 
 
 Going back to base R, a different way to plot frequency distributions for continuous 
variables is to use plot() to make a line plot of the smoothed density expected for your data set 
(created by the function density()). This removes arbitrary decisions about binning (though the 
degree of smoothness is also arbitrary), creating an idealized histogram-like curve (due to the 
smoothing, the RT density curve goes below the actual minimum of 426 and above the 
maximum of 1923). Again, you can make it look nicer if you like, by using the other arguments 
of plot() that we used above (main, xlab, ylab). 
 
plot(density(RTdat$RT)) # Creates Figure 3 

 
Figure 3. Density plot for RT (with ugly defaults) 
 
2.2 Distribution typicality: Averages 
 
 As mentioned earlier, the two most important properties of a distribution are the average 
(or central value, or typical value), and the variability (or spread). The average tells us 
what’s most typical, while the variability tells us how informative this typical value is for the 
rest of the data set. 
 The English term “average” is ambiguous: it can mean (at least) three very different 
mathematical concepts. Most of the time, “average” means mean, because the mean has a lot 
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of useful mathematical properties (as we’ll see). But the word “average” can also refer to the 
median (middle point) or to the mode (distribution peak). 
 
2.2.1 Averages in Excel 
 
 Even if you don’t know the technical name, everybody knows how to calculate the mean 
(平均數): you add up all the values, then divide by the total number of values. As we’ve seen, 
in Excel, the function for the mean is (confusingly) called =AVERAGE(). For example, the 
following Excel commands give exactly the same results for the RT data in column A 
(717.4008351, as you can see if you widen the cell enough to see the whole thing): 
 
=AVERAGE(A:A) 
=SUM(A:A)/COUNT(A:A) 
 
 However, if I were writing a paper about these data, I would not simply type “The mean 
RT was 717.4008351 ms,” because then I would look like an ignorant fool. Why? Because 
there’s no way I could actually measure reaction time to that degree of precision; in psychology, 
it’s sufficient to report RT values in milliseconds, not 1/10000000 of a millisecond. So in 
preparing my report, I should actually use the following command, to round the mean to the 
same degree of precision that I was actually able to measure (717 ms): 
 
=ROUND(AVERAGE(A:A),0) 
 
 In contrast to the mean, the median (中位數) is the value that divides the distribution in 
half, after you’ve sorted the measurements in order from smallest to largest. So if there are an 
odd number of items, it’s the middle item in the list, and if there are an even number, it’s the 
mean of the two middle items in the list. This seems like a pretty natural way to define 
“average”, but already you can see some problems with it. On the practical side, you have to 
do a lot of not-very-mathematical operations: list all the items in order, check if the total is 
even or odd, find the middle one or two items depending on the evenness vs. oddness, and then 
if are two middle items, you end up having to use the mean anyway. On the conceptual side, it 
treats one single item (or pair of items) as somehow “typical” of the whole data set, which 
doesn’t seem fair to all the other items. By contrast, the mean is computed using every single 
data point (when you sum and count them). 
 But it still has its uses, so Excel has a function for it, so let’s try it (you get 673): 
 
=MEDIAN(A:A) 
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 What good is the median? One common use is for representing the typical value of a 
distribution on an ordinal scale, since the median is also defined by ordering. The median may 
also be used if the distribution is very different from the normal bell shape, since extreme 
values may pull the mean far away from what is the intuitively the “main part”. Such 
distributions are called skewed. For example, in the highly skewed Zipfian word frequency 
distribution, we can make the paradoxical statement that most words are less common than 
average. What? How can most be below average? Because when “average” means mean, the 
mean will be pulled up by those very few word types that have multiple word tokens, as in the 
“Jabberwocky” corpus. Even if almost all words appear once and only one word appears twice, 
most word frequencies will still be below the mean (1< 1.037037037): 
 
=AVERAGE(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2) 
 
 In such a non-bell-shaped situation, the median gives you a much more reasonable result. 
For example, we can use Excel’s =MEDIAN() function to get 1 as a more intuitive “average” 
for this situation: 
 
=MEDIAN(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2) 
 
 That lone two in that sea of ones is what is known as an outlier (離群值，異常數據): a 
value lying outside what one would want to call the typical range of values in a distribution. 
Despite the usefulness of the mean, then, outliers pose a danger to it, so if you really need to 
calculate means for some statistical purpose, you might want to figure out an objective way to 
drop your outliers entirely. If we could do that in the above data, for example, the lone 2 would 
disappear, and now the mean (not just the median) would be 1, as our intuitions would prefer. 
Dropping data can itself be a risky business, of course, since it might look like you’re cheating, 
but as we’ll see later in this chapter, there are ways to do it a bit more objectively. 
 Finally, the mode (眾數) represents distribution typicality as the most frequent value 
(roughly like the peak of a histogram or density plot). Like the median, it doesn’t take all of 
the data points into account and it’s not easy to calculate (the algorithm throws out any value 
as soon as a more frequent one is found). In fact it may not even exist, when the values are all 
different, so the frequencies are all 1. Excel’s function here is =MODE(), and if there is no 
mode, you’ll just get the response #N/A (not applicable). What happens if you use it on the 
RTs? (Answer: you get 657.) 
 
=MODE(A:A) 
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 Even though the mode is not very useful in statistics, there are a few situations where it 
comes up. When you’re using a nominal rather than a quantitative scale, with a very small 
number of categories, you’re often interested in which category has more data points. For 
example, if you have 20 nouns and 30 verbs, there is no mean or median, but there is a mode: 
verbs. Knowing about modes is also useful because not all distributions have just one. In 
particular, acceptability judgments sometimes show a bimodal distribution, even when 
they’re collected on an ordinal or even continuous scale, with one bump for “bad” and another 
bump for “good”, and a valley in between. 
 In the normal distribution (or any other symmetrical distribution), the mean, median, and 
mode are all the same, so you lose nothing by using just the mean, the easiest-to-calculate one. 
If the distribution is skewed, there are various tricks you can try to make the statistics easier, 
including those discussed in section 4.3. 
 
2.2.2 Averages in R 
 
 As review, let’s redo all of this in R. Because R was created by real statisticians, the 
functions have more “scientific” names: you use mean() to compute the mean and median() 
to compute the median. Both assume the vector-based logic of R, and take a single multi-valued 
numerical vector. Trying to replicate these functions with more basic R functions, as I do below, 
shows how much easier it is to calculate the mean than the median! 
 
mean(RTdat$RT) # Answer rounded to 717.4008 in the display 
my.mean = function(x) { 
 return(sum(x)/length(x)) 
} 
my.mean(RTdat$RT) # Same answer 
 
median(RTdat$RT) # 673 
my.median = function(x) { 
 sort.x = sort(x) 
 median.x = sort.x[ceiling(length(x)/2)] # Get it...? Assumes an odd number of elements 
 if (length(x)/2 == floor(length(x)/2)) { # If there are actually an even number... 
  median.x = mean(median.x,sort.x[ceiling(length(x)/2)+1]) # Include other midpoint 
 } 
return(median.x) 
} 
my.median(RTdat$RT) # Same answer (finally) 
 
 R has no function for the ill-defined notion of mode (the function mode() does something 
totally different), but we can create our own (if we wanted to for some reason): 
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my.mode = function(x) { 
 return(as.numeric(names(sort(table(x),T))[1])) # Unpack it piece by piece if curious 
} 
my.mode(RTdat$RT) # 657, like Excel's =MODE(), but can't tell if there's no mode... 
 
 As noted earlier, a key difference between the mean and the median is that the latter 
ignores “extreme” values. For example, look at what happens we drop off the last value in x 
(notice also how we can combine commands into one line using semicolons): 
 
x = c(rep(1,4),10); x; mean(x); median(x) # Compute mean & median for skewed data 
mean(x[1:4]); median(x[1:4])  # drop last extreme value 
 
 Finally, we can test the mean/median/mode rule of thumb by drawing vertical lines on our 
RT density plot to see if they fall where they’re claimed to: Try it! 
 
plot(density(RTdat$RT)) 
abline(v=my.mode(RTdat$RT), lty=1) # Adds solid vertical (v) line for mode 
abline(v=median(RTdat$RT), lty=2) # Adds dashed vertical line for median 
abline(v=mean(RTdat$RT), lty=3) # Adds dotted vertical line for mean 
legend("topright", legend=c("mode","median","mean"),lty=c(1,2,3)) 
 
2.3 Distributional variability 
 
 Remember in chapter 1 how I said that statistics finally made it possible for scientists to 
go beyond a clockwork metaphor for the universe? The secret was that they figured out how to 
quantify variability. Since this was a more revolutionary idea than merely describing the 
averages, the concepts and math start to get slightly more intimidating at this point, but if we 
take it step by step, I think you’ll develop a feeling for them too. 
 The most simple-minded way of quantifying variability is to calculate the range (全距), 
which is just the highest number (maximum) minus the lowest number (minimum). Like the 
median or mode, this throws out almost all of your data (except those two extremes), so it’s 
not the most important measure. Nevertheless, research papers really do sometimes mention 
the range, or even just the minimum and maximum, especially when the authors just want to 
describe the variability of a distribution that’s not so crucial to the analysis. Typically this is 
when the goal is merely to show that the variation in your sample is reasonably low, so you 
can safely generalize from it, as when showing the readers that there was a narrow range of 
ages in a child language study. For example, it would look reasonable to read “The mean age 
of our participants was 4;4 (range 3;9 - 4;6)” (where the notation Y;M means Y years and M 
months), but readers might get worried if they saw “The mean age of our participants was 4;4 
(range 3;9 - 14;6)” (what’s that teenager doing in there?). 
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 However, not only does the range ignore everything but the extremes, but it also ignores 
the intuition that variability should explain what is not typical about the distribution, 
complementing the job of the average (especially in the sense of the mean). So somehow we 
need a way to define variability so that it includes all of the values, not just some of them, and 
compares each of these values with the mean, to show how they are different from it. That is, 
we want a quantity that reflects, in some sense, how the data points deviate (vary, differ) from 
the average. 
 Let me just give you the answer first, and then explain later where it comes from. The 
standard measure of variability in a distribution is the standard deviation (標準差). This gives 
you a number telling you how far away, on average, each data point is from the mean. 
Conceptually, then, the standard deviation is itself a kind of mean of all these deviations. For 
technical reasons it can’t be calculated as simply as we’d like, but we’ll save these technical 
reasons for later. The standard deviation is in the same measuring units as your data (e.g., in 
the case of RT, it’s in milliseconds), so the bigger it is, the more spread out your distribution 
is. A distribution where every data point is identical (e.g., all 1 or all 943.2) has a standard 
distribution of zero (the minimum value); there is no maximum value, though it can’t be infinite 
for any finite data set, any more than the mean can. 
 In Excel, the usual way to calculate the standard deviation is with the =STDEV() or 
=STDEV.S() functions (the latter appearing only in Excel 2010 and later versions). Yes, Excel 
has two functions that do pretty much exactly the same thing, and it has a couple further 
standard deviation functions too; I’ll explain this weird situation later. For now, let’s just try it 
on our RT distribution; the following gives us 195.229758, and as usual for a report we should 
round this to the nearest millisecond (195 ms). 
 
=STDEV(A:A) 
 
 R only has one function for the standard deviation: sd(). As usual, R displays a more 
rounded value than Excel does, but rest assured, internally it still represents it in rich detail, so 
further calculations using it aren’t affected. 
 
sd(RTdat$RT) # 195.2298 
 
 You may have noticed that the name “standard deviation” is a lot more awkward than the 
elegant little word “mean”. For this reason, it is often abbreviated as SD, sd, or even s. For 
consistency, the mean gets abbreviated too, as M, m, or x̄ (pronounced “x-bar”). Why x̄? 
Because x is the usual symbol for a data point, and the bar is somebody’s way of indicating a 
special value derived from all the x values, namely the mean. It’s hard to type this symbol, 
however, so in this book I’ll tend to use M and SD for the mean and standard distribution, 



Ch. 3: Averages and variation  14 
 

respectively, following the highly influential APA style (used in many psychology and 
language-related journals); see American Psychological Association (2011). 
 Despite its superficial unfamiliarity, there are a number of very good reasons to calculate 
a standard deviation. First, as the name suggests, it’s the standard measurement of variability. 
So when you report means in a paper, it’s a good idea to also give the standard deviation, for 
example “a mean reaction time of 612 ms (SD 43 ms).” Including the SD will tell the readers 
how reliable the mean is. Thus the above result sounds a lot more reliable than “612 ms (SD 
543 ms)”. In the first case, you get the sense that the reaction times were usually pretty close 
to 612 ms, while in the latter case, they seemed to have wandered everywhere, making the 
mean pretty useless. For our “real” RTs, the standard deviation of 195 ms around a mean of 
717 ms doesn’t seem too bad, and indeed, as we saw from the histogram and density plots, it 
really does look like most of the data cluster pretty close to the mean. 
 Second, lots of statistical formulas involve dividing something by the standard deviation. 
Why? Because this is just a way of expressing the distance of each data point from the “center” 
of the distribution so we can compare data across distributions, a crucial point we return to 
when we discuss rescaling later in this chapter. 
 Finally, since the standard deviation defines variability, it can also be used to define 
outliers more precisely. As we’ve seen, outliers can pull the mean away from what we 
intuitively want to be the “real” average, so they can cause trouble if we’re doing statistics 
based on the mean. So rather than dropping all data we don’t like, we can be more objective 
and say that we will dump as outliers only those values that are more than, say, three standard 
deviations from the mean (above or below). If you look at our real RT plots, you can imagine 
counting out 195 ms three times in both directions, and you’ll see that following this procedure 
will only drop a small number of extremely extreme outliers. 
 If you’re having trouble imagining this, use the code below to redraw the density plot, and 
notice that the lower bound is so low (717-3*195 = 132) that it won’t even appear unless we 
start the x-axis value at zero instead of the first RT. So if we drop data outside these lines, only 
the data to the right of the upper bound will be dropped. 
 
plot(density(RTdat$RT),xlim=c(0,2000)) # Start x limit at 0 so we can see lower SD line 
abline(v=mean(RTdat$RT)-3*sd(RTdat$RT)) # Adds lower bound to 3-SD range 
abline(v=mean(RTdat$RT)+3*sd(RTdat$RT)) # Adds upper bound to 3-SD range 
 
 How many data points would we be dropping, by the way? Hardly any, out of the almost 
one thousand in the full data set: 
 
length(RTdat$RT) # Total 
[1] 958 
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length(RTdat$RT[RTdat$RT>mean(RTdat$RT)+3*sd(RTdat$RT)]) # Outliers 
[1] 21 
 
 Here’s another way to calculate the second value, exploiting a useful trick: if you do 
arithmetic on logical values, then FALSE turns into 0 and TRUE turns into 1. 
 
sum(RTdat$RT > mean(RTdat$RT)+3*sd(RTdat$RT)) # Outliers 
[1] 21 
 
2.4 More about the math of distributions, means, and standard deviations 
 
 Hopefully by now you’ve gained a sense why it’s useful for us human beings to think 
about data in terms of distributions, but how does it actually work, mathematically? Let’s 
expand on the concepts and functions we introduced above, starting with the notion of 
distributions themselves, then turning to the math behind means and standard deviations. 
 
2.4.1 Distributions, area, and probability 
 
 Statistical analyses are actually based on the mathematics of distributions, not directly on 
the raw scores themselves. In particular, in the geometry of distributions, area represents 
probability. We’ll discuss this mind-blowing concept a lot, starting in chapter 4, but the basic 
idea is like this. Imagine somebody gives you a bag full of all those 958 RTs, completely mixed 
up, and you stick your hand in there, pull one out, and look at it. What is the probability that it 
would be one of those 21 outliers (i.e., at least three standard deviations above the mean)? The 
answer should be obvious: 21/958. That is, if we did this weird thing a million times, taking 
one RT out at random, writing down its value, putting the RT back into the bag, and doing this 
over and over again a million times, the proportion of outliers would get closer and closer to 
21/958, or about 0.022, or about 2% of the total. 
 Now look again at those distribution plots, especially the last one you plotted, with the 
vertical line marking where the outliers start. Doesn’t it seem believable that the area under the 
curve to the right of that line only make up about 2% of the total area under the whole curve? 
 Or let’s put it another way. Because of the crucial connection between area and probability, 
there’s one crucial difference between a histogram and a regular bar graph: what matters about 
the bars in a histogram is not their heights, but their areas. That’s because here the bars 
represent frequencies, i.e., the number of data points in some particular interval. That’s why 
the bars in a histogram touch each other and have exactly the same interval width: a histogram 
is actually a jagged (non-smoothed) density curve, where each histogram bar represent not just 
the total count within some interval, but a portion of the whole area under this jagged curve. 



Ch. 3: Averages and variation  16 
 

 Because of the centrality of probability in statistics, the mathematics of distributions is 
based on a particular way of looking at them called quantiles (分位數), which relate an area 
under a distribution with a value along the measurement scale. If the quantile is expressed as a 
percentage, it’s called a percentile (百分位數), and if you divide the distribution into quarters, 
the three points defining them are the quartiles (四分位數). Quantiles, particularly in the form 
of percentiles, are familiar from education (e.g., “Mary scored in the top 10% of her class”), 
but the basic idea is also very important for understanding how statistics works. 
 In particular, area = probability is the key idea behind those famous p values (remember 
that p stands for probability). If a paper says that such-and-such a pattern was statistically 
significant because p < .05, this means that the researchers derived a value from their study 
that fell along some scale, drew an imaginary line up from that value onto the relevant 
distribution, and observed that the area beyond that line took up less than 5% of the total area 
of the whole distribution. In other words, the researchers’ results were a kind of outlier relative 
to this distribution. Since the distribution in this case represents the chance results, where we 
assume no real pattern in the data, the researchers’ real results were outliers to chance. Thus 
they probably did find a real pattern. 
 Yes, this is even more mind-blowing that the area = probability idea itself, but that’s why 
I’m mentioning it early, and then repeating it again and again in many chapters to come. 
 Another way to make the typicality and variability of your sample clear is to use yet 
another kind of plot, called a box plot (or a box and whisker plot), invented by the great 
American statistician John W. Tukey ([1915-2000]; we’ll see his name again later). As shown 
in Figure 4, this kind of plot represents typicality using the median (thick line) and the first and 
third quartiles as the bottom and top of the box (indicating the middle 50% of the distribution); 
the “whiskers” (vertical lines) represent data points that are away from the median by up to 1.5 
times the length of the box, and individual outliers (beyond the whiskers) are indicated by 
individual dots. The median is used instead of the mean because the purpose of a box plot is 
not to do fancy math, but just to give us humans an intuitive sense about the overall distribution 
pattern. 
 Naturally, R has a built-in function for this kind of plot (as does Excel, but you can try 
that yourself). Let’s try it on our RT data, using the following code to create Figure 4. Note all 
of those outliers on the top, consistent with what we saw from the skewed histogram. 
 
boxplot(RTdat$RT, 
 outline = T,       # Draws outliers as points 
 main="Box plot", ylab="RT (ms)"     # For decoration 
) 
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Figure 4. A boxplot of RTs 
 
 A box plot is basically a simplified, square-ish version of a density plot, which makes it’s 
easy to draw by hand, which is what people often had to do when box plots were invented. But 
now we have fancy computers, so why not put an actual curved density plot in our graph? In 
fact, why not plot the density and its mirror image vertically, so we get a nice symmetrical 
shape? And since the result will kind of look like a violin, why not call this a violin plot? 
 Good idea! Base R can’t do this, but the package vioplot can (Adler & Kelly, 2021). But 
since ggplot2 can also do it, we can just use that, so we don’t have to learn too much. Note that 
the first argument in the ggplot() function is the data frame, so we don’t need the $ operator to 
specify the variable RT; it knows this comes from RTdat. We put the variable information in 
the aes() function; confusingly (to me anyway), even though “aes” stands for “aesthetics”, in 
ggplot2-ese this actually means “crucial variables” not “prettiness”. This function expects both 
an x and a y, even though we only have a y here, so for x I just threw in NA (not available). 
But a more realistic analysis you’d probably have actual values for x (e.g., Gender = Boys vs. 
Girls, or WordType = Noun vs. Verb), so you’d get a separate violin for each group of data. 
 
library(ggplot2) # Only if you haven't already loaded it 
ggplot(RTdat, aes(x=NA, y=RT)) + 
 geom_violin() # Default violin with dumb colors and axis labels 
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Figure 5. A violin plot of RTs 
 
2.4.2 The math of means 
 
 Let’s look more at the mean now. As we’ve seen, the mean is trivial to calculate, even if 
we break it down into the more basic components of summing and counting. Now look at this: 
 
Mean: 𝑀𝑀 = ∑𝑥𝑥

𝑛𝑛
 

 
 That is exactly what we just did in Excel and R, but now it’s expressed in mathematical 
notation. Something familiar and intuitive literally turns into Greek! Just as in first language 
acquisition, however, to learn a formalism you need to know its meaning already, so it’s best 
to introduce this formalism with something you already know. 
 I already told you that M stands for the mean, and x stands for the individual data values; 
now I can tell you that n represents the number (n for number, get it?) of data points (e.g., 
psychologists sometimes unfairly tease theoretical syntacticians for basing their analyses on 
“an n of one”, i.e., just testing their own acceptability judgments). Then, instead of writing out 
all the separate xs (since there could be any number of them), mathematicians use the symbol 
Σ (Greek “S”, for “sum”) to symbolize adding up any number of numbers. More technically, 
we could have formalized it as shown below, with i representing the index of numbers as we 
move from x1 (the first data point) to xn (the last one), but this doesn’t improve the clarity, so 
forget it. Either way, the formula just says that to calculate the mean, you first sum up all the 
data values, then divide by the total number of values. 
 
Mean: 𝑀𝑀 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛
  (fancier notation) 

 
 But what does a mean really mean? What does this formula have to do with our human 
intuitions about typicality? Interestingly, it relates to intuitive physics: the mean represents the 
center of gravity (重心) of the distribution. I mean this literally: if you print out a properly 
made histogram or density plot, paste it onto some heavy material (like cardboard, wood, or 



Ch. 3: Averages and variation  19 
 

metal), cutting around the edges to make a real 2D distribution shape thing, then when you try 
to balance it, you’ll find that the balancing point is exactly where the mean is (and not where 
the median or mode are). 
 You can get a feeling for this by plotting the following highly skewed distribution, 
imagining where it would balance on your finger, and then comparing your answer to where 
the actual mean is: they’re pretty much the same. 
 
x = c(rep(1,10), 2:99, rep(100,100)) 
hist(x) # Where will it balance in your finger...? Use mean(x) to find out.... 
 
 So it’s not just math that favors the mean over the median and mode; our intuitions do as 
well. We can even see this metaphor at play in idioms like “the weight of the evidence” in 
English, or 重點 in Chinese. 
 Still, we need mathematical formalization as well, especially when we turn to trickier 
concepts like the standard deviation. 
 
2.4.3 The math of the standard deviation 
 
 As discussed above, the basic idea is quite intuitive: SD quantifies the “average” distance 
of every point to the M. Let’s see how we can make this intuition work mathematically. 
 First, to find out how far any value x is from the mean M, just find the difference between 
the value and the mean, subtracting as below. So if x is higher than M, this difference will be 
positive (+), and if it’s lower it’ll be negative (-), and if they’re the same it’ll be zero. That way 
the sign (positive or negative) will tell us which side of the mean the data point is on (above or 
below). This is called the deviation for x. 
 
Deviation: 𝑥𝑥 −𝑀𝑀 
 
 Now we want to find the “typical” deviation for the whole data set. The most obvious way 
turns out to fail in the end, but it’s always a good idea to start with the most obvious way. This 
would simply be to calculate the mean of all the deviations, like this: 
 

 ∑(𝑥𝑥−𝑀𝑀)
𝑛𝑛

 (this isn’t going to work!) 
 
 Unfortunately, this won’t work. Do you see why? Well, if you literally calculate the mean 
for all the deviations, you always get zero. This is due to algebra (follow along if you find this 
kind of thing entertaining): 
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∑(𝑥𝑥 −𝑀𝑀)
𝑛𝑛

=
∑𝑥𝑥 − ∑𝑀𝑀

𝑛𝑛
=
∑𝑥𝑥
𝑛𝑛
−
∑𝑀𝑀
𝑛𝑛

= 𝑀𝑀 −
∑𝑀𝑀
𝑛𝑛

= 𝑀𝑀 −
𝑛𝑛𝑀𝑀
𝑛𝑛

= 𝑀𝑀 −𝑀𝑀 = 0 

 
 Put more intuitively, the problem is that since the mean is in the “middle”, “half” of the 
deviations will be positive and half will be negative, so when you add them up, of course you 
get zero. As the algebra above shows, though, this is actually true no matter what the 
distribution shape, even for highly skewed distributions, as you can experience by running the 
following R script (try it). 
 
x = c(1,1,1,1,5) # A skewed distribution 
mean.x = mean(x) # 1.8 
deviations = x - mean.x # R's vector logic will calculate it across all data points 
deviations # Take a look 
mean(deviations) # Yup, zero 
 
 So what we want is to somehow make the deviations positive, and then compute the mean 
from the positive values. After all, Taichung is a certain distance from Taipei, and Taichung is 
also a certain distance from Kaohsiung; when discussing distance, north versus south doesn’t 
really matter. Again, the most obvious way to make the deviations positive turns out not to 
work, but again, it’s helpful to start there anyway. Why don’t we just take the absolute value 
(絕對值) of the deviations, that is, just throw away the minus sign, like |-23| = 23? Then when 
we can calculate what’s called the mean (absolute) deviation: 
 
Mean deviation: mean deviation =  ∑|𝑥𝑥−𝑀𝑀|

𝑛𝑛
 (not very useful either) 

 
 While the mean deviation always has to be positive, it turns out to have a more subtle 
problem: the absolute value function is too “pointy”. That is, its graph has a sharp edge in the 
middle because it basically flips half of a straight line over, as shown in the left side of Figure 
6. (By the way, in the R code, note how I apply the absolute value abs() function by putting it 
inside an otherwise unnamed function - it’s all on one line, so no { } are needed - that merely 
feeds the x values into it; this trick is useful whenever you want to plot a function on a 
continuous range of values). 
 
plot(function(x) abs(x), -10, 10) # See the point at the bottom? 
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Figure 6. Absolute values are pointy; squares are not 
 
 This pointiness makes the math a lot harder. For one thing, there are basically two 
functions here (a downward falling line, then an upward rising line), so it’s hard to write simple 
formulas with it. For another thing, the dot at the point is ambiguously defined (is it part of the 
downward or upward trend?), which has all sorts of bad mathematical effects. In particular, 
points with ambiguous slopes are difficult to use in calculus (微積分學), and calculus is 
relevant because it is used to calculate the area under a distribution curve (which represents 
probability, remember?). 
 Thus the inventors of statistics decided to get rid of the negativity by calculating the 
square (二次冪) of the deviations instead. As we can see in the right side of Figure 6 above, 
this basically turns the sharp V into a smooth U: 
 
plot(function(x) x^2, -10, 10) # No point! 
 
 Now when we compute the mean of these squared deviations, we get something extremely 
useful, called the variance (變異數). Note that unlike the ordinary-language words “variability” 
or “variation”, the term “variance” is a technical term referring to this precise value. Variance 
is sometimes symbolized as var, though there are several other symbols for it too, as we’ll see. 
 

 ∑(𝑥𝑥−𝑀𝑀)2

𝑛𝑛
   (not quite right; see below...) 

 
 As it turns out, even the first step in calculating the variance, namely the part where you 
add up the squared deviations in Σ(x-M)2, is useful in statistics. This is called the sum of 
squares (平方和、相似字), abbreviated SS. So another name for variance is the mean sum 
of squares, which in certain contexts is abbreviated MS. In particular, variance is what the 
“VA” in ANOVA stands for (analysis of variance), and when you run an ANOVA, you will 
get a table that reports things called SS and MS, since they are used in computing the p values. 
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 While the math of variance is very useful, squaring things can be confusing to us human 
beings. For example, in our data set of reaction times, we measured them in milliseconds (ms), 
and the mean is in this same measurement unit. But if we want to discuss the variance, we don’t 
want to have to say that it’s in squared milliseconds - what the heck would that mean in real 
life? 
 The solution is this problem (sorry, so many problems) is to (ahem) take the square root 
(平方根，二次根) of the variance. Yes, I know we just squared everything, but remember that 
we squared the deviations, then added them to produce a sum, then divided by the total. So now 
when we take the square root, we don’t just turn everything back into the deviations again, 
because of those other operations (particularly the summing). The result is truly a new thing, 
called the standard deviation (標準差). Remember that? We symbolize it as SD, sd, or s, with 
SD being the symbol used in APA style. Because the standard deviation is the square root of 
the variance, the variance is also the square of the standard deviation, so yet another symbol 
for variance is s2. 
 

 �∑(𝑥𝑥−𝑀𝑀)2

𝑛𝑛
  (still not quite right) 

 
 Sadly, we’re still not done, and even worse, in order to understand why you need a time 
machine to fly to chapter 4, learn a couple of crazy concepts, then come back here again. To 
save you the trouble, let me just tell you that the concepts are the sample (樣本) and the 
population (總體、母體). You’ve probably heard about these anyway, at least samples. A 
sample is just the finite set of actual data that we want to analyze, like the RTs in RTdat. It’s 
called a sample because we actually don’t care about these specific data points; we only 
collected our RTs because we want to generalize from them to the whole population (maybe 
infinitely large) of all RTs. This process is what’s called inferential statistics (推論統計學), 
and it’s what people usually think about when they think about statistics. 
 Samples and populations matter here because the formula for the standard deviation 
depends on which one we are talking about. The population is an idealized mathematical thing, 
kind of like the ideal Chinese sentence that can be any length (as in our example in chapter 1). 
Since it’s a mathematical abstraction, it gets the most logical, elegant version of the standard 
deviation formula. This formula is identical to what we just wrote, except that we used the 
wrong symbols. Those symbols are only for the sample: M is the sample mean, and n is the 
sample size. So technically our equation for the mean earlier in this section was about the 
sample mean. Let me rewrite it to make this clear: 
 
Sample mean:  𝑀𝑀 = ∑𝑥𝑥

𝑛𝑛
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 The equation for the population mean looks the same, except we replace two symbols: the 
population size is symbolized with capital N, and the population mean is symbolized with the 
lowercase Greek letter for “m”, namely μ (mu), instead of the Latin letter. 
 
Population mean:  𝜇𝜇 = ∑𝑥𝑥

𝑁𝑁
 

 
 Similarly, the formula for the population standard deviation just takes the one we wrote, 
but uses N for the population size, μ for the population mean, and the lowercase Greek letter 
for “s”, namely σ (sigma), instead of the Latin letter. (By an amazing coincidence, both of these 
two Greek letters exactly match the two used by phonologists in the study of syllables, where 
σ stands for syllable and μ stands for a subsyllabic prosodic unit called the mora. But you don’t 
need to know that.) 
 

Population standard deviation:  𝜎𝜎 =  �∑(𝑥𝑥−𝜇𝜇)2

𝑁𝑁
 

 
 By contrast, the sample standard deviation uses the symbols we used before, but (and I 
apologize in advance for this bit of craziness) divides by the sample size n minus one, instead 
of just dividing by n: 
 

Sample standard deviation:  𝑆𝑆𝑆𝑆 =  �∑(𝑥𝑥−𝑀𝑀)2

𝑛𝑛−1
 

 
 This means that we have two versions of the variance formula as well: 
 

Population variance:  𝜎𝜎2 = ∑(𝑥𝑥−𝜇𝜇)2

𝑁𝑁
 

 
Sample variance:   𝑠𝑠2 = ∑(𝑥𝑥−𝑀𝑀)2

𝑛𝑛−1
 

 
 As I said, the abstract mathematical population gets the more elegant version of the 
formulas than the concrete real-world sample does. But why on earth do you divide by n-1 in 
the sample formulas, instead of just by n, as the whole mean-based logic would suggest we 
should? Basically, because the variance or standard deviation of a sample with one data point 
makes no sense. What’s the mean of the set {9}? Intuitively, it’s just 9, of course, and that’s 
what Excel and R tell you too: 
 
=AVERAGE(9) 
mean(9) # No problem 
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 But how variable is the set {9}? What does that question even mean? If you ask Excel and 
R to compute the standard deviation of this set, both of them will just yell at you. Excel even 
tells you why: its error #DIV/0! means that you tried to divide by zero (i.e., divide by n-1, 
where n = 1). 
 
=STDEV(9) 
sd(9) # NA (not applicable) 
 
 Even if your sample has two elements, the sample formulas will treat it as if it really only 
has one element, since if you know that one element and also know the sample mean M, the 
second element is “redundant”. For example, suppose your friend has a two-element set but 
only tells you that it contains 1 and the mean is 2. What’s the other element? Right, it must be 
3. While sample M is calculated using all n data points, the sample SD is calculated using M 
and just n-1 data points. Clear? No? Even the experts might agree with you. The n-1 part 
technically represents something called the degrees of freedom (自由度), abbreviated df. The 
name is supposed to reflect this “redundant element” insight, but as Hogg & Craig (1995, p. 
134) admit, the term gets its name “for no obvious reason”. Don’t worry; we’ll be using df a 
lot in future chapters, but you don’t need to know exactly where it comes from, just what the 
value is supposed to be (to confirm that Excel and R are really doing what you are trying to 
make them do). 
 In any case, all of this logic (such as it is) only makes a real-world difference for tiny 
samples. As your sample gets larger and larger, it will capture more and more of the whole 
population, so dividing by n-1 becomes more and more like dividing by n. This is yet another 
reason for that minus one: it’s a warning not to put your confidence in tiny samples. 
 Let me end this section with a few other computer-related points. First, I promised that 
I’d explain why Excel has more than one standard deviation function. The old (but still working) 
function =STDEV() is for the sample standard deviation; that’s why we used it on our sample 
of RTs. The new function =STDEV.S() is the same, except that the .S reminds you that it’s for 
the sample. People had been complaining for years about tiny arithmetical mistakes in some of 
Excel’s functions, so in Excel 2010 and later versions they finally got around to fixing some 
of them; =STDEV.S() thus should be more accurate than =STDEV() (but not enough that 
you’d probably ever notice in realistic situations). Excel also has two parallel functions for the 
population standard deviation, which we will not be using: the old =STDEVP() and the new 
(fixed?) =STDEV.P(). It also has old and new functions for both sample and population 
variance; can you guess (or look up) what they might be...? 
 We’re mostly going to ignore the population versions of these functions, since in the real 
world (i.e., outside the make-believe land of textbooks), we can’t really calculate stuff about 
abstract populations. Maybe for this reason, R only has the sample versions: sd() computes the 
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sample standard deviation, while var() computes the sample variance. Thus the following 
statements will give you TRUE no matter what vector x you test (try it!). By the way, notice 
how R’s vector logic not only allows us to avoid a loop in the first line, but also lets us write 
the sample standard deviation formula in a way very similar to the mathematical forms above. 
 
sd(x) == sqrt(sum((x-mean(x))^2)/(length(x)-1)) 
var(x) == sd(x)^2 
 
 If you actually tried it, you know that I lied: they actually both give you FALSE! Why? 
You can make a guess if you replace the == (equal to) with - (subtract). Instead of getting the 
expected zeroes, you get numbers (try it!). Now look at those numbers carefully. Can you figure 
out why this happens? Answer (don’t peek!): Computers are physical things, not pure math 
machines, so everything they calculate is actually just estimated. You get more intuitive results 
if you do this: 
 
round(sd(x) - sqrt(sum((x-mean(x))^2)/(length(x)-1)),10) 
round(var(x) - sd(x)^2,10) 
 
3. Rescaling distributions 
 
 Now let’s do something a little bit different (but extremely important) with a different set 
of RTs. Namely, we’re going to compare two people’s reaction times in a “fair” way, and learn 
a crucial statistical concept: z scores. Then we’ll see why this concept is so useful. 
 
3.1 Comparing two people's reaction times 
 
 Download RTs_new.txt from the statistics resource page. This contains the same real RT 
data I used to make the double histogram for participants 4 and 5 that I showed in chapter 3, 
but now I added fake information about the experimental items (the original version is still in 
RTs.txt). So if you open the file, you’ll see that it has three columns (Item, Participant, and 
RT), where each of the 15 items appears twice in the data set, once for participant 4 and once 
for participant 5. You can imagine this comes from an experiment where two (plus more) 
participants had to do something in response to 15 different words. Participant 4 responded 
with an RT of 445 ms to item 1, but participant 5 responded with an RT of 941 to this same 
item 1. And so on. 
 Let’s remind ourselves what their data look like with a density plot (obviously you can 
only make this in R). The result is shown in the leftmost plot in Figure 7. 
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RTs = read.delim("RTs_new.txt") 
minRT = min(RTs$RT) # Makes sure we can fit both people into one plot 
maxRT = max(RTs$RT) 
plot(density(RTs$RT[RTs$Participant==4]), # Plot participant 4 as solid line 
 xlim = c(minRT, maxRT), main = "RT distributions") 
lines(density(RTs$RT[RTs$Participant==5]), lty=2) # Add participant 5 as dashed line 
legend("topright", legend=c("Participant 4","Participant 5"), lty=c(1,2)) 

 
Figure 7. Two participants and their RTs 
 
 As we observed informally in chapter 2, participant 4 is both faster and more consistent 
than participant 5: 
 
mean(RTs$RT[RTs$Participant==4]); mean(RTs$RT[RTs$Participant==5]) 
[1] 523.2667 
[1] 777.6667 
 
sd(RTs$RT[RTs$Participant==4]); sd(RTs$RT[RTs$Participant==5]) 
[1] 87.69384 
[1] 168.7325 
 
 But since the two participants responded to the same 15 items, we might also want to be 
able to compare not just their overall RTs, but also their item-specific response patterns. In 
particular, in this imaginary version of this experiment, let’s say that only one of these items 
was crucial to our hypothesis: item 14. All the other items were just fillers, designed to hide 
the purpose of our experiment so the participants couldn’t “cheat”. 
 Of course we could just compare the two participants’ RTs for item 14 directly, as shown 
below. By the way, in case you haven’t noticed so far, we still have to include the data frame 
name and $ when referring to other columns inside the [ ] to use as a logical index, or else R 
will complain that it can’t find our variable. Also notice that we can combine logical values 
using the logic functions & (“and”, where A&B is true if and only if A is true and B is true) 
and | (“or”, where A|B is true if A is true or if B is true, including if both are true). 
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RTs$RT[RTs$Item==14 & RTs$Participant==4] 
[1] 627 
 
RTs$RT[RTs$Item==14& RTs$Participant==5] 
[1] 652 
 
 Aha! Participant 4 responded more quickly to item 14 than participant 5. Therefore... what? 
It’s hard to say. Maybe this happened because of something special about item 14, which is 
what we’re looking for in our experiment. But maybe it only happened because participant 4 
tends to be faster overall, so we didn’t learn anything about item 14 in particular. 
 How can we tease apart these two interpretations? Well, if we’re concerned that the item 
14 difference is really just an overall participant mean difference, then we could just subtract 
away the participant means. We may as well do it for all of the items, for consistency. This 
procedure is called centering, since it turns the mean of your transformed sample to zero (since 
newM = oldM - oldM = 0). Let’s put the transformed RTs into our data frame RTs, as a newly 
named column, where the “y” indicates that we’ve transformed the original RTs (x) into 
something new (I have a reason for choosing these particular letters, as you’ll see soon). If we 
had more than just two participants, it would be best to do this job in a loop, but I’ll just 
copy/paste/edit the lines: 
 
RTs$RT.y = 0 # A new empty numerical vector for our data frame 
# Adjust Participant 4 values 
RTs$RT.y[RTs$Participant == 4] =  
 RTs$RT[RTs$Participant == 4] - mean(RTs$RT[RTs$Participant == 4]) 
# Now adjust Participant 5 values 
RTs$RT.y[RTs$Participant == 5] =  
 RTs$RT[RTs$Participant == 5] - mean(RTs$RT[RTs$Participant == 5]) 
 
 Let’s plot these centered distributions to see what we did. As shown in the middle plot in 
Figure 7 above, the shapes remain the same, but now the two distributions overlap a lot more, 
since they both have a mean of zero. Thus many of the values for RT.y will be negative, since 
those are the ones that happen to fall below the mean for that particular participant (i.e., where 
the responses are faster than average). 
 
minRT.y = min(RTs$RT.y) # Makes sure we can fit both people into one plot 
maxRT.y = max(RTs$RT.y) 
plot(density(RTs$RT.y[RTs$Participant==4]), # Plot participant 4 as solid line 
 xlim = c(minRT.y, maxRT.y), main = "Centered RT distributions") 
lines(density(RTs$RT.y[RTs$Participant==5]), lty=2) # Participant 4 as dashed line 
legend("topright", legend=c("Participant 4","Participant 5"), lty=c(1,2)) 
 
 How do the two participants compare on item 14 in their centered RTs? 
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RTs$RT.y[RTs$Item==14& RTs$Participant==4] 
[1] 103.7333 
RTs$RT.y[RTs$Item==14& RTs$Participant==5] 
[1] -125.6667 
 
 Hm. Participant 5 is now faster on item 14, because the raw RT of 652 is actually relatively 
fast compared to this participant’s overall mean of 778 ms (rounding from 777.6667). Similarly, 
the raw item 14 RT for participant is 627 ms, which is actually relatively slow compared to this 
participant’s overall mean of 523 ms. But ... isn’t participant 5 also more variable than 
participant 4? Maybe their RTs for item 14 would actually be more similar, or even flip around 
again, if we took this into account too, stretching out participant 4’s distribution and shrinking 
down participant 5’s distribution so that they have the same standard deviation...? How can we 
do that...? 
 If you’re thinking that we should divide the centered means by the standard deviations, 
then you are absolutely correct. It doesn’t matter if we divide by the standard deviations of the 
original values RT or of the centered RT.y, since centering just shifts the distribution up or 
down the scale, without affecting the spread, as you can see in the middle plot in Figure 7. 
Let’s call this newly transformed variable RT.z (after the original data x and the centered y). 
 
RTs$RT.z = 0 # This just creates an empty numerical vector of the right length 
# Adjust Participant 4 values 
RTs$RT.z[RTs$Participant == 4] =  
 RTs$RT.y[RTs$Participant == 4] / sd(RTs$RT[RTs$Participant == 4]) 
# Now adjust Participant 5 values 
RTs$RT.z[RTs$Participant == 5] =  
 RTs$RT.y[RTs$Participant == 5] / sd(RTs$RT[RTs$Participant == 5]) 
 
 Once again, let’s make another plot, to see what this new transformation did. As shown 
in the rightmost plot in Figure 7 above, the shapes still don’t change, but now the distribution 
spreads match, not just the distribution means. 
 
minRT.z = min(RTs$RT.z) # Makes sure we can fit both people into one plot 
maxRT.z = max(RTs$RT.z) 
plot(density(RTs$RT.z[RTs$Participant==4]), # Plot participant 4 as solid line 
 xlim = c(minRT.z, maxRT.z), main = "Scaled RT distributions") 
lines(density(RTs$RT.z[RTs$Participant==5]), lty=2) # Participant 4 as dashed line 
legend("topright", legend=c("Participant 4","Participant 5"), lty=c(1,2)) 
 
 Here are the results for the final transformations for the item 14 RT: 
 
RTs$RT.z[RTs$Item==14& RTs$Participant==4] 
[1] 1.182903 
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RTs$RT.z[RTs$Item==14& RTs$Participant==5] 
[1] -0.7447685 
 
 We can’t transform any more: this comparison must be the most reliable one. And it shows 
that participant 5 did indeed respond more quickly than participant 4 for item 14 (i.e., the 
transformed score is lower), with the cross-participant differences in means and standard 
deviations taken out, that is, relative to each participant’s other response speed. 
 
3.2 z scores 
 
 Congratulations! You have just rescaled your variable, thereby calculating another crucial 
number in statistics: the z score. Why “z”? Maybe because you start with the raw value x, and 
then you calculate the centered score y = x - M, and then finally, you compute z = y/s. Maybe 
that’s not the true story, but it’s one way to remember the name. 
 Of course you don’t really need to do this in three steps: both Excel and R have built-in 
functions for computing z scores. Excel uses =STANDARDIZE(x, M, SD) (with those three 
arguments), and the R the function is scale(x), on the raw data vector x; in fact, scale() 
calculates not just the z scores for each value in x, but also gives you M and SD. Try it: 
 
RT4 = RTs$RT[RTs$Participant==4] # I'm sick of all that typing 
RT4.z = RTs$RT.z[RTs$Participant==4] 
scale(RT4) # New way 
cbind(RT4.z, scale(RT4)) # The same, right? 
 
 As usual, there are formulas for both samples and populations, but they look the same, 
aside from the symbols: 
 
Population z score:  𝑧𝑧 = 𝑥𝑥−𝜇𝜇

𝜎𝜎
 

 
Sample z score: 𝑧𝑧 = 𝑥𝑥−𝑀𝑀

𝑠𝑠
 

 
 Now, what’s cool about the z score is that subtracting away the mean and dividing away 
the standard deviation automatically removes what’s unique about your distribution, except its 
shape, which stays the same. Even the real-world units (e.g., milliseconds) divide away, leaving 
nothing but a universal mathematical object. In other words, the z score tells you where your 
real-world score lies relative to a standard distribution. Since you can translate scores from any 
distribution into and out of a z score, this standard distribution turns into kind of a “universal 
translator”. 
 As a universal, the standard distribution has the maximally simple parameters: M = 0, SD 
= 1. This follows automatically from the algebra of the z score formula. I won’t annoy you with 
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the mathematical proof, but you can easily confirm that it’s true for our “real” data (within the 
physical limitations of your computer’s estimation powers): 
 
mean(RT4.z) # Yes, that number is supposed to be zero (forgive your poor computer!) 
sd(RT4.z) # Exactly one 
 
3.3 Using z scores 
 
 As we’ll see in later chapters, the concept of z scores is crucial to the logic of many 
statistical tests, from the t test on up in complexity, but they’re also useful in their own right. 
Here’s another example to supplement our RT example. 
 Suppose that your linguistic department’s official distribution of grades has declared that 
the mean of every exam should be 75 and the standard deviation should be 20, and the failing 
grade must be set at 60. You give a test to a bunch of students, and get the results in example-
grades.txt (on the statistics resources page as usual). This turns out to have M = 66.1 and SD 
= 10.7 (confirm for yourself!). You want to know which of these students failed (and so do 
they, I’m sure). 
 We can start by converting 60 (from the official distribution) into its z score. Since this 
distribution is official, we may as well treat it as the “population” standard deviation (σ), 
though this doesn’t affect the math. Note that the score is negative, since 60 is below the mean 
75. 
 

𝑧𝑧 =
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

=
60 − 75

20
= −0.75 

 
 Next, we convert the actual test scores into z scores (this time using the formula for 
samples, though again the math doesn’t really care). Below are the lowest 30 z scores in this 
new z distribution. Twenty-three of these are below -0.75 (as you can see if you sort the z scores 
yourself), and so those 23 miserable students failed the test. 
 

-1.98 -1.98 -1.88 -1.79 -1.69 -1.6 -1.51 -1.41 -1.41 -1.32 -1.32 -1.23 -1.23 -1.13 -1.13 

-1.13 -1.13 -1.04 -1.04 -0.95 -0.95 -0.85 -0.76 -0.66 -0.66 -0.66 -0.57 -0.57 -0.57 ... 

 
 The conceptual value of z scores is even greater than any immediate practical uses, 
however. For example, let’s say you do another experiment, say on nouns and verbs, and you 
want to know if there’s a statistically significant difference in the reaction times to the two 
word types. As we’ll see starting in chapter 4, statistical significance has to do with what we 
can infer about the population from our samples. So in this case, what we really care about is 
if the means for noun RT and verb RT are “truly” different in the population. Observing that 
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the sample means are different isn’t enough, since they might be different by chance, just due 
to randomness in the sampling (i.e., our sample doesn’t reflect the population very well). To 
get around this problem, we need to find out if the difference in the two sample means is larger 
than zero, compared to what we are likely to get by chance. So we use math to estimate a 
distribution predicted by chance, representing all possible sample mean differences. Then we 
look for our actually observed sample mean difference: where does it appear on this distribution? 
If it’s right in the middle, then bad luck: we can’t say they’re different from chance. But if it’s 
way out in a tail, as an outlier... ah, then that looks pretty unlikely to have happened by chance 
alone. 
 And how do we locate this value on this abstract population distribution? By rescaling our 
observed sample mean difference as a kind of z score. More precisely, the t test will let you do 
all of this automatically, using a modified version of z scores called t values (as we’ll see, the 
formula for t is almost identical to the formula for z). 
 
4. The normal distribution 
 
 The t test and many other techniques in inferential statistics depend on being able to model 
the chance population distribution, even without being able to “see” it for real, and this in turn 
relies on the assumption that most random distributions have a particular well-understood 
shape, a normal bell-shaped shape, a type of distribution that perhaps you have heard of: yes, 
it’s the normal distribution (常態分散、正態分散). In this section I’ll first show you how to 
play with normal distributions in Excel and R, then explain the math behind them, and finally 
make some suggestions about what to do if your data don’t quite fall into the nice bell shape 
required by this logic. 
 
4.1 The normal distribution 
 
 The normal distribution (also called the Gaussian distribution, after the great German 
mathematician Carl Friedrich Gauss [1777-1855], who worked on it) is just one of many types 
of mathematically well-defined distributions. For example, if we create a random variable with 
Excel’s =RAND() function or R’s runif() function, as we’ve done a few times already, we get 
a uniform distribution, where every value between 0 and 1 has an equal probability of 
appearing in the output: 
 
x = runif(1000000) # Use a lot of dots to make the uniformity more clear 
head(x) # Take a peek! 
hist(x) # Pretty boring! 
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 Of course, in real life, variable processes almost never give an equal chance to every 
possible outcome. Even when you flip a coin, where there’s an equal probability of getting a 
head (正面: H) or a tail (反面: T), if you flip the coin more than once, the probabilities suddenly 
stop being uniform: the sequence HHHHHHH, with heads every time, is obviously much less 
likely than a mixed sequence like HTTHTHH. The coin-flip-set distribution is called a 
binomial distribution (二項分配), and it’s quite useful in real life, including linguistics, so 
we’ll come back to it again shortly. 
 But by far the most commonly encountered distribution in the vast universe of real life is 
the normal distribution. In R you can make a random variable that tends to follow a normal 
distribution by using the rnorm() function (Excel can do this too but not so easily, as we’ll see 
later). If you put just one number in there as an argument, it’ll give you that many random 
numbers from a normal distribution with mean of 0 and standard deviation of 1, thus sampling 
from the universal standard normal distribution. 
 We can get a sense of what this distribution looks like, and see how you get closer to the 
ideal bell shape as you increase the sample size, by drawing a series of density plots, like so 
(it’s animated, so you have to try it for yourself): 
 
for (i in 2:500) { # density() requires at least two data points 
 plot(density(rnorm(i)), main = i, xlim=c(-3,3), ylim=c(0,0.5)) # Keep in same x/y axes 
} 
 
 R’s rnorm function is part of a whole family of functions for the normal distribution, as 
shown below. Similarly, for the uniform distribution R has runif(), dunif(), punif(), and 
qunif().Though Excel doesn’t have a direct equivalent of R’s rnorm() function, it does have 
equivalents for the others in the ...norm() family, as we’ll see in a moment. 
 
 rnorm(n): n random numbers from a normal distribution 
 dnorm(x): height of density curve for ideal normal distribution at value x 
 pnorm(q): proportion of area under ideal normal distribution below (left of) value q 
 qnorm(p): quantile for area p in ideal normal distribution 

 
 The pnorm and qnorm functions are particularly useful, as we’ll see. But already we can 
use the dnorm function to plot an ideal normal distribution, as shown in Figure 8. 
 
# Conceptually simple way to do it 
x = (-30:30)/10 # Same as c(-3,-2.9, ... , 2.9, 3) 
y = dnorm(x) 
plot(x,y,type="l") # Remember "l" here is a lowercase "L", for "line" 
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# Clever way to do it (same trick we used above for plotting absolute value and squares) 
#  First create new, unnamed function object that simply converts x into dnorm(x) 
#  Then plot it between x = -3 to +3 
plot(function(x) {dnorm(x)}, xlim=c(-3,3)) # ... or... 
plot(function(x) dnorm(x), -3, 3) # We don't need { } because it's all on one line 

 
Figure 8. The standard normal distribution 
 
 As I just mentioned, by default R’s ...norm() functions deal with the standard normal 
distribution, where the mean is 0 and the standard deviation is 1. However, we can change the 
mean and standard distributions to other numbers if we want. This won’t affect the shape 
(normal is normal), but it shifts the center (mean) and/or adjusts the spread (standard deviation). 
Try the following interactive animation to study a few randomly generated normal distributions, 
or plug in your own means and standard deviations by hand to see what you get. 
 
for (i in 1:10) { 
 this.mean = rnorm(1); this.sd = abs(rnorm(1)) 
 plot(function(x) {dnorm(x, mean=this.mean, sd=this.sd)}, 
  xlim=c(-5,5), ylab="Density", 
  main = paste("M =", round(this.mean,4), "SD =", round(this.sd,4))) 
 readline() # Waits for you to hit any key (main R window must be active) 
} 
 
 Of all the things you can do with normal distributions in Excel and R, perhaps the most 
important (at a conceptual level) is to find the proportion of the area under some particular 
section of the normal curve. Area is important because, as I mentioned earlier, in a histogram 
(or smoothed distribution curve), area represents probability. Moreover, just like circles, all 
normal distributions share such a uniform shape that any particular part always has exactly the 
same proportional area as the same part in any other normal distribution, as summarized in 
Table 3 (see the Wikipedia article “68–95–99.7 rule” for more information): 
 
 

https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
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Table 3. The 68-95-99.7 rule. 
 

Area within: 1 SD around M 2 SD around M 3 SD around M 
contains about: 68.26% of area 95.45% of area 99.72% of area 

 
 We can also work backwards, and start with a particular area, and figure out where we 
would need to draw the two lines around the mean to capture that much area. For example, to 
capture 95% of the area, we need to draw lines associated with SD = ±1.96 on either side of 
the mean. This implies that the probability of randomly choosing a point in a normal 
distribution more than 1.96 SD away from the mean (either above or below) is less than 5%: p 
< .05. Yes, there’s that magic p value again. 
 To find areas of parts of the standard normal curve, we can use the following functions 
(Excel 2010 and later also has updated functions with “.” inside, e.g. =NORM.S.DIST()). For 
both Excel and R, the main argument is the z score, that is, the point on the x-axis of the standard 
normal distribution. The R argument is called q, though, since here the z is related to the 
quantile, or how far along you are moving from left to right along the x-axis of the standard 
normal distribution. Both Excel and R then give you the area under the standard normal curve 
to the left of z, that is, the area “up to” that point. 
 
Excel: =NORMSDIST(z) gives the area under standard normal curve to the left of z 

=NORMDIST(z, M, SD) does likewise for any normal distribution. 
=NORMDIST(z, M, SD, FALSE) computes the density curve, like dnorm() 

 
R:  pnorm(q) works the same way (p = probability = area; q = quantile = z) 
 
 Let’s try it: the following command uses R’s pnorm() function to compute the area 
between two lines on either side of the mean, each 2 SD away from the mean, in the standard 
normal distribution. It does this by first computing the area to the left of a line 2 SD above the 
mean, then subtracting the area to the left of a line 2 SD below the mean. (If, for some reason, 
we want to measure the area to the right of a line, just change the argument lower.tail to 
FALSE, from the default TRUE.) 
 
pnorm(2)-pnorm(-2) # 0.9544997: Compare with the table above 
 
 If you’re having trouble visualizing what’s going on, we can follow the tip at 
http://www.r-bloggers.com/creating-shaded-areas-in-r/ and use R’s vector-creating function 
seq() (which creates a sequence of numbers between any two values) and plotting function 
polygon() (for many-sided filled-in shapes: 多邊形) to shade the relevant portions of the 
normal distribution step by step (note that the coordinates [坐標] for the polygon include 

http://www.r-bloggers.com/creating-shaded-areas-in-r/
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beginning and ending values to close off the shape). Paste in each command one by one, and 
you’ll see how the whole figure is built up; the final result is shown in Figure 9. The area in 
dark grey is the one we’re measuring with the R code above. 
 
plot(function(x) dnorm(x), -3, 3) # Our standard normal distribution 
abline(v=2) # Line 2 SD to the right of M 
coord.x = c(-3,seq(from = -3, to = 2, by = 0.01),2) # x coordinates for first polygon 
coord.y = c(0,dnorm(seq(-3,2,0.01)),0) # y coordinates for first polygon 
polygon(coord.x, coord.y, col="darkgrey") # Area to the left of SD = +2 
abline(v=-2) # Line 2 SD to the left of M 
coord.x = c(-3,seq(-3,-2,0.01),-2) # x coordinates for second polygon 
coord.y = c(0,dnorm(seq(-3,-2,0.01)),0) # y coordinates for second polygon 
polygon(coord.x, coord.y, col="lightgrey") # Area to the left of SD = -2 

 
Figure 9. The area within 2 SD of the mean 
 
 We can also go the other way, finding the z value from some given area of the standard 
normal distribution; like =NORMSDIST and pnorm(), these also assume the area on the left 
(Excel 2010 and later also have the “improved” versions =NORM.INV() and so on). 
 
Excel: =NORMSINV(probability), inverse of =NORMSDIST() 
  =NORMINV(p, M, SD) for any normal distribution 

R:  qnorm(p) (p = probability, i.e. area; q = quantile = z) 
 
 Try it by running the following R code. Note that the first command gives you -1.959964, 
the z score marking where the lower tail of the standard normal distribution contains exactly 
one half of 5%, so that the areas of both tails add up to 5%. This is where my statement above 
came from about the relationship between z = ±1.96 and p = .05. 
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qnorm((1-0.95)/2) # SD of left edge of symmetrical 95% area (SD=-1.96) 
plot(function(x) dnorm(x), -3, 3) # I.e., together both below tails have 5% 
abline(v= qnorm((1-0.95)/2)) # Mark left tail 
abline(v=abs(qnorm((1-0.95)/2))) # Mark right tail 
 
 By the way, by combining =NORMINV() with =RAND(), you can force Excel to give 
normally distributed random numbers, similar to R’s rnorm() function. For example, 
=NORMINV(RAND(),5,3) will give you random numbers from a normal distribution with M 
= 5 and SD = 3. You can also do this using the Analysis ToolPak, which has a tool called 
“Random Number Generation” (亂數產生器), including choices similar to R’s r...() family of 
random number functions. 
 But why are we doing this again? Because area represents probability. Thus if the normal 
curve is a realistic model of variability, then if we know the area in this model, we can calculate 
the actual probability of random events in the real world. 
 This basic concept (area under special distributions = probability) is a key element in all 
of inferential statistics, even beyond the normal distribution itself. In fact, there’s a special 
distribution for each type of data and test. We’ll be explaining all of these in detail in later 
chapters: 
 

 Normal distribution: Populations of continuous values, where σ is known. 
 t distribution: Samples of continuous values where the population σ is unknown. 
 F distribution: Ratios (used in ANOVA). 
 χ2 (chi-squared) distribution: Category sizes. 
 Binomial distribution: Binary categorical data. 
 Poisson distribution: Count data. 

 
4.2 More about the math of normal distributions 
 
 Since these “more about the math” sections tend to have equations, how about the 
equation for the normal distribution? It looks like is this: 
 

 𝑓𝑓(𝑥𝑥, 𝜇𝜇,𝜎𝜎) = 1
𝜎𝜎√2𝜋𝜋

𝑒𝑒−
(𝑥𝑥−𝜇𝜇)2

2𝜎𝜎2  

 
 Please memorize this for the test. Ha, just kidding! I’m only showing you this for two 
reasons. First, as promised, it shows that the only two parameters defining the normal 
distribution shape are just the mean (μ) and standard deviation (σ); the π (pi) and e are constants 
(around 3.141593 and 2.718282, respectively, in case you forgot). Second, aren’t you glad that 
Excel and R can calculate this for us, so we don’t have to? 
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 One fun fact (also sometimes useful in real life) is that you can estimate the standard 
deviation for a normal distribution just by looking at its shape. Notice that in the very center of 
the bell, the curve forms a convex (凸) roof, but it bends inward as you move towards the tails, 
becoming a bit concave (凹). The point at which the curve switches from concave to convex 
is precisely 1 SD from the mean (because of calculus). Try plotting Figure 10 for yourself: 
 
plot(function(x) dnorm(x, mean=50, sd=5), 35, 65) 
abline(v=(50-5)); abline(v=(50+5)) # Add vertical lines 1 SD below and above mean 

 

Figure 10. The switch from convex to concave happens at 1 SD around the mean 
 
 Another fun fact is that the normal curve never goes all the way down to zero: even if x = 
1,000,000, y will become extremely small, but it will never become exactly zero. Yet even 
though the normal distribution is infinitely wide, its area is still finite (that’s more calculus 
magic). In fact, the area of the standard normal distribution (where mean = 0 and SD = 1) is 
exactly 1. This turns out to be an extremely useful fact, since as we mentioned earlier, the area 
under a distribution represents probability, and by definition, probabilities range between 0 
(never happens) and 1 (always happens). So “always happens” = the area in the entire 
distribution, and “sometimes happens” = the area of part of the distribution. 
 Why is the normal distribution “normal” anyway? There are many reasons for its special 
status. First, the normal distribution has a nice shape: it’s symmetrical, so the mean, median 
and mode are all the same, and it’s smooth, which both fits our intuitions about real-world 
variability and makes it mathematically simple. Second, centuries of empirical observations 
have shown that random variation around a mean tends to form a normal distribution (mostly, 
sort of). For example, we’ll soon see that this is true (mostly, sort of) for our RT measurements. 
Third, just as any particular circle can be completely defined just by its center and its radius 
(半徑), so too can any particular normal distribution be fully defined by only two parameters 
(參數): the mean and the standard deviation. 
 Finally, many other types of distributions, like the binomial distribution for coin flips, turn 
into ever closer approximations of the normal distribution as sample size increases. For 
example, say you flip a coin n times. As we noted earlier, the probability that the flips will end 
up all heads or all tails is low, but the probability that about half will be heads and half tails is 
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high. R has a family of functions for the binomial distribution too, including dbinom() for the 
density curve, and Excel has the similar function =BINOMDIST(). 
 Let’s see how the binomial distribution turns into the normal distribution. You can 
calculate the normal distribution that best fits a binomial distribution by setting the parameters 
to the following values (I read this somewhere so it must be true): 
 
𝑀𝑀 = 𝑛𝑛𝑛𝑛  (p = probability of heads; here p = .5, since we’re flipping a coin) 
 
𝑆𝑆𝑆𝑆 = �𝑀𝑀(1 − 𝑛𝑛) 
 
 Now we can let R do the rest. In the two plots in Figure 11 below, the dots come from the 
binomial distribution and the line represents the best-fitting normal distribution. The x-axis 
represents the number of heads out of n coin flips. For example, when n = 4, there are five dots, 
representing a histogram for the five possible sequences of four coin flips. In the two tails there 
are dots near the bottom of the plot, representing the unique outcomes of all heads (HHHH) or 
all tails (TTTT). Next to these we have the four ways in which just one flip is T (THHH, HTHH, 
HHTH, HHHT) and likewise for H (HTTT, THTT, TTHT, TTTH). In the middle there are the 
six possibilities with equal numbers of H and T (HHTT, HTHT, HTTH, THHT, THTH, TTHH). 
 Crucially, the plot on the right of Figure 11 shows that as the sample size gets larger (from 
n = 4 to n = 40), the fit between the binomial and normal distributions gets better. 
 
# Left plot in Figure 8 
n = 4 
P = 0.5 
M = n*P 
SD = sqrt(M*(1-P)) 
plot(function(x)dnorm(x,mean=M,sd=SD), 
 xlim=c(M-2*SD,M+2*SD), # Plot middle of curve 
 main="n=4",ylab="") 
points((0:n),dbinom((0:n),size=n,prob=P)) 
 
# Right plot in Figure 11 
n = 40 
P = 0.5 
M = n*P 
SD = sqrt(M*(1-P)) 
plot(function(x)dnorm(x,mean=M,sd=SD), 
 xlim=c(M-2*SD,M+2*SD), # Plot middle of curve 
 main="n=40",ylab="") 
points((0:n),dbinom((0:n),size=n,prob=P)) 
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Figure 11. Estimating a normal distribution from binomial distributions 
 
 Why does this happen? How does a sequence of flips of a two-sided coin relate to 
continuous variability on a continuous scale, like RT? Well, here’s one to think about it. 
Suppose that the “true” population RT for our experiment is some one specific number, floating 
up in an ideal world of abstractions, like that posited by Plato (柏拉圖). Somehow this ideal 
RT keeps dropping little metal balls, one by one in a steady stream, down to earth where we 
mere mortals can see it. Unfortunately, the path from Heaven to Earth is noisy, so the falling 
balls get bounced around randomly left and right, exactly like balls dropping through the pins 
in a pachinko machine (彈珠機). For each pin, the ball has a 50% chance of bouncing to the 
left or to the right. Now imagine that at the bottom there is a row of tall cups to hold the balls 
that bounce down along various paths. The pattern of balls at the bottom will tend to form a 
binomial distribution: just replace the H and T in the coin flip metaphor with L (left) and R 
(right) in the pachinko metaphor, so it’s more likely for a ball to experience the bouncing 
sequence LRRLRL (putting it in the middle of the distribution) than LLLLLL (putting it at the 
left edge of the distribution). If there are an infinite number of pachinko pins, we’ll get a true 
normal distribution. 
 Here are three wonderful things about this metaphor. First, this metaphor is called the 
bean machine or, more weirdly, the quincunx (https://en.wikipedia.org/wiki/Bean_machine). 
Second, it was invented way back in the 1800s by the Englishman Francis Galton [1822-1911], 
one of the early founders of statistics (pachinko-type games existed in Europe back then too). 
Third, and most wonderful at all, you can simulate it in R! Try playing around with A. Blejec’s 
quincunx R code linked from the Statistics Resources page. I’m serious - stop reading this book, 
run that R code (by copy/pasting it or using source()), and have fun for a little while! 
 
4.3 Dealing with abnormality 
 
 Statistical tests based on the logic of the normal distribution are called parametric tests, 
since you only need to know the value of the two key parameters of mean and standard 

https://en.wikipedia.org/wiki/Bean_machine
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deviation. Parametric tests include famous things like t tests and ANOVA. One implication of 
this logic is that if your data set doesn’t involve a continuous distribution (the normal 
distribution is continuous), you shouldn’t use parametric tests. For example, binary data, like 
coin flips, should use tests based on the binomial distribution, and count data should use things 
like the chi-squared distribution or the Poisson distribution. 
 But even if your data are continuous and form a smooth distribution with one mode, it 
might still not be very normal, violating an assumption of parametric tests. For example, maybe 
your distribution isn’t symmetrical, but skewed. When a distribution is symmetrical, its 
skewness (偏態) is 0. When it’s got a long “tail” pointing to the left, it’s negatively skewed, 
and when it’s got a tail pointing to the right, it’s positively skewed. The Poisson distribution, 
for example, tends to be positively skewed, because it relates to counting, and you can’t count 
below 0 (try it): 
 
plot(x=(0:10),dpois((0:10),lambda=3)) # lambda = mean = SD (same in Poisson) 
 
 Even if most of your distribution is normal, you may have some extreme outliers (which 
will also tend to make the distribution skewed, if the outliers are all on one end). 
 One objective way to check if your data looks normal enough to use parametric statistics 
is to make what’s called a Q-Q norm plot. It’s called this because it plots quantiles of a 
standard normal distribution (ideal) against the quantiles for your sample (real life). If your 
sample really is normally distributed, it will basically have the same shape as the standard 
normal curve, so its sub-areas (marked by the quantiles) will cover the same proportions of the 
whole thing as the matching sub-areas in the normal curve. This means that if you plot one set 
of quantiles against the other, you’ll get a straight line. If this line isn’t straight, your sample 
isn’t normal. Similarly, if your sample is basically normal, but you have some outliers, your 
line will be straight except for a few points off to the side. 
 Making a Q-Q norm plot is much easier to do in R than in Excel, since R has a built-in 
function for it: qqnorm(). Just put your variable in there, and you get a Q-Q norm plot. For 
example, let’s make yet another plot of those real-life RT measurements in RTdat, and add the 
ideal Q-Q line with qqline(). Does it form a straight line? Looking at Figure 12 (and 
remembering how skewed the histograms and density plots were), I would say that our RTs 
are not really very normal, especially in the tails (where the dots don’t line up with the line). 
 
qqnorm(RTdat$RT) # Plot real vs. ideal quantiles for each data point 
qqline(RTdat$RT) # The line you should get if your data are normal 
 



Ch. 3: Averages and variation  41 
 

 
Figure 12. The skew of the RTs in a Q-Q norm plot 
 
 What would a normally distributed sample look like? Let’s try plotting a fake one, using 
the function rnorm(): 
 
fake = rnorm(100, 10, 2) # n = 100, M = 10, SD = 2 
qqnorm(fake) # Pretty straight! 
qqline(fake) # Yes, quite straight (except for the tails, due to randomness) 
 
 If you still don’t feel comfortable using R, you can make Q-Q norm plots in Excel too, 
but it’s harder. First put your data in order, from smallest to largest, and number them from 1 
to n. This will be the y-axis for the plot, as in the plots that R makes. To make the x-axis, you 
use the function =NORMSINV((i-0.5)/n), where i is the number of the data point in the 
ordering and n is your sample size. Then (i-0.5)/n is the cumulative relative frequency (累積

相對次數) for your actual data, forming the y-axis. Finally, you make a scatter plot of the x-
axis against the y-axis. 
 If you think about if, it makes sense that RTs are only normal in the middle: RTs fall on 
a ratio scale, with an absolute zero value, so response times can never below zero, but there’s 
no absolute limit on how long (slow) they can get. Thus if the mean is within one or two 
standard deviations of zero, there won’t be enough room for the full normal distribution to 
spread out down below, forming an extra-short tail on the left and an extra-long tail on the right. 
 RT distributions are much more normal than word frequency distributions, however, 
which as we saw in chapter 2, tend to have extremely long tails on the right. Thus the 
“Jabberwocky” frequency distribution looks absolutely ridiculous in a histogram, density plot, 
box plot, and a Q-Q norm plot. Try it; note the new graphic function par() and its argument 
mfrow, allowing us to plot multiple figures together). Blame Zipf’s law! 
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jabberwocky = scan(file="Jabberwocky_OnlyWords.txt", what="character") 
jabberwocky.freq = table(jabberwocky) 
par(mfrow=c(2,2)) # Sets graphic parameter for multiple figures in a 2 x 2 array 
hist(jabberwocky.freq) 
plot(density(jabberwocky.freq)) 
boxplot(c(jabberwocky.freq)) # c(), since boxplot() hates tables for some reason 
qqnorm(jabberwocky.freq) 
qqline(c(jabberwocky.freq)) # c() again, since qqline() also hates tables 
 
 There are basically three options when we want to run inferential statistics on a non-
normal distribution. First, if you’re lucky, non-normality is merely due to a few outliers, which 
you can remove, though being careful not to cherry-pick (採櫻桃謬誤) just the ones that suit 
your hypothesis. You could throw out all data more than 3 SD away from the mean, as we 
discussed earlier. Or you could look at a Q-Q norm plot, see if there are just a few dots that 
don’t match the line for normality, and throw out just the data points associated with those dots. 
Or you could make a box plot, which defines outliers in terms of quantiles, as we discussed 
earlier. 
 The second option if your data are not normal is to find another mathematically well-
known distribution that is more appropriate. For example, if your data involve counting 
repeated events of the same thing (e.g., how many customers say “Thank you” each day in a 
politeness study), you could use the positively skewed Poisson distribution. Unfortunately no 
such simple distribution exists for RTs (they’re not counts) or for word frequencies (counting 
different words, not repetitions of the same word; see chapter 11 for some more complex 
distributions that might help here). 
 Finally, if both of the above strategies fail, you can try to transform your data to fit a 
known distribution. In particular, if the distribution is positively skewed, a very common 
strategy is to take the logarithm (對數) of the values, which stretches out the lower values and 
squeezes together the higher values. The base-n logarithm of x is the inverse of nx. 
Mathematically, the most “natural” base is e (about 2.71828), so R (invented by 
mathematicians) defines the function log(x) as loge(x), where log(2.71828) gives you 
approximately 1. For non-mathematicians, the more familiar logarithm is based on 10, so in 
Excel, the function =LOG(x) is defined as log10(x), where =LOG(10) gives you 1. I used base-
10 logs in my Taiwanese plot in chapter 1, since it’s easier to explain to non-mathematicians, 
but for most of my research I use R’s default natural log. Excel’s =LOG() function is 
equivalent to R’s log10() function, and R’s log() function is equivalent to Excel’s =LN() 
function, which stands for “natural log”. 
 Using logarithms this way is called the lognorm transformation, and it takes advantage 
of the logarithm function’s weird shape, which spreads out low input values and squeezes 
together high input values, as shown in Figure 13. 
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plot((1:100),log(1:100)) 

 
Figure 13. Points along the natural (base e) logarithm curve 
 
 This trick turns out to help get rid of most of the skew in RTs, as shown in Figure 14: 
 
RTdat$logRT = log(RTdat$RT) # Lognorm the RTs, put in RTdat object 
par(mfrow=c(2,2))    # Prepare to plot in a 2 x 2 square 
hist(RTdat$RT, main="raw")  # Positively skewed raw RTs 
hist(RTdat$logRT, main="log")  # More symmetrical lognormed RTs 
qqnorm(RTdat$RT, main="raw") # Not very straight line for raw RTs 
qqline(RTdat$RT)                # Doesn't fit this line very well 
qqnorm(RTdat$logRT, main="log") # Somewhat straighter for lognormed RTs 
qqline(RTdat$logRT)              # Fit this line somewhat better 

 
Figure 14. Improving the normality of RTs 
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 Word frequency distributions are also positively skewed, so it is standard to use the log 
transform to make them more normal as well. As Baayen (2001) points out, there is also a good 
psychological reason to do this: like other psychophysical values (like brightness or loudness), 
the brain processes frequencies on a logarithmic scale, so slight differences in small values are 
easily detected, while the same differences in larger values are hard to detect. Unfortunately, 
as Baayen (2001) also points out, word frequency distributions are so highly skewed that 
lognorming them doesn’t help very much. There really isn’t any very good alternative, though, 
so everybody still relies on the lognorm model for frequencies and hopes that parametric 
conclusions remain mostly reliable anyway. Try it out on the “Jabberwocky” word frequencies, 
comparing with the plots you made above; they’re a little more normal-looking, but not much: 
 
par(mfrow=c(2,2)) # Sets graphic parameter for multiple figures a 2 x 2 array 
hist(log(jabberwocky.freq)) 
plot(density(log(jabberwocky.freq))) 
boxplot(log(c(jabberwocky.freq))) 
qqnorm(log(jabberwocky.freq)) 
qqline(log(c(jabberwocky.freq))) 
 
 Lognorming is not the only type of transformation you see in published reports. Another 
one is sometimes used to transform proportional data, which, due to its built-in lower limit 
of 0% and upper limit of 100%, cannot be truly normal either. The transformation here is called 
the arcsine (反正弦 ) square root transformation, which spreads out the data in both 
directions. However, I’ll let you read about it in other books or on the web if you’re curious, 
since I won’t teach it in this book. Why not? Because I agree with Warton & Hui (2011) that 
“the arcsine is asinine”: it is both misleading, since it distorts the data, and unnecessary, since 
you can analyze proportional data much more effectively by using non-parametric methods 
like logistic regression. This method (introduced in chapter 11) uses the binomial distribution, 
since proportions arise when you have two competing options, as when flipping a coin (e.g., 
10% heads vs. 90% tails). 
 
6. Summary 
 
 I’ve discussed a lot of things in this chapter. On the practical side, I explained how to turn 
on Excel’s Analysis ToolPak, which you need for most statistical analyses, and how to load 
data frames into R. I also showed how to make a variety of useful graphs: histograms, density 
plots, box plots, violin plots, and Q-Q norm plots. I also discussed a lot of important theoretical 
concepts, with some of their practical implications. In particular, those graph types are designed 
to show the shape of data distributions, and what the area under a distribution represents, which 
is related to p values. The two key parameters that define a distribution are the mean (which 
you already know as the ordinary sense of “average”) and the standard deviation (roughly, the 
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mean distance of each data point from the mean). You can convert values in any distribution, 
no matter what the shape, to line up with values in any other distribution, no matter what the 
shape, by calculating z scores, which remove all that is special about the distributions except 
their shapes (by subtracting out the mean and dividing out the standard deviation). If your 
sample is mostly normal, its z scores will mostly match points along the standard normal 
distribution, and in this universal mathematical object, the areas of its sections can be calculated 
automatically, in both Excel and R. Among other things, doing this can allow us to detect if 
our data have outliers or show skewness that make our data less than fully normal, in which 
case there are various fixes we can try, including the lognorm transformation. If our data are 
normal enough, then, we can match them to a universal normal distribution representing chance, 
to see if our results are so far out in a tail that they should be considered an outlier, and thus 
significantly different from chance. In the next chapter I explain exactly what this means, and 
how to do it in Excel and R. 
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