
Chapter 12
Beyond ANOVA, regression, and chi-squared: Mixed-effects modeling

James Myers

2022/5/13 DRAFT

1. Introduction

 As we’ve seen, regression modeling lies pretty close to the heart of statistics: t tests and
ANOVA are really linear regression, and chi-squared tests are closely related to logistic
regression. But most of the regression models we’ve worked with assume that each observation
is independent of all of the others. How should we incorporate the grouping of data by units?
The traditional method was to use repeated-measures regression, which, as we’ve seen, is
closely related to repeated-measures ANOVA and paired t tests. In this method, we first create
regression models for each grouping unit (e.g., experimental participant) and then run one-
sample t tests on the coefficients across the models. In other words, when we partial out the
random effects of the grouping units from the fixed effects represented the coefficients, we
do it in separate steps.
 This approach works fine for many purposes (including for categorical data, in the form
of repeated-measures logistic regression), but it looks like its days are numbered. More and
more experimental linguists are giving up ANOVA and traditional linear and logistic
regression and adopting a method called mixed-effects modeling (sometimes also called
multi-level modeling). Unlike mixed ANOVA, what is being mixed in mixed-effects
modeling is not just within-group and between-group variables, but more crucially, the fixed
and random effects. That is, rather than partialling the fixed and random effects out in separate
steps, they are instead processed together in a single model. Not only is this mixed-effects
approach more flexible (for more complex mixings of random and fixed variables), but it also
makes it possible to handle more than one random variable at the same time, thus providing a
solution to the language-as-fixed-effects fallacy of Clark (1973). It also deals with other
annoyances of ANOVA: regression-based approaches aren’t affected as much by violations of
sphericity or unbalanced data (i.e., unequal cells sizes).
 Open up an experimental linguistics paper today, and you are more and more likely to see
the authors using linear mixed-effects modeling (LME) or mixed-effects logistic regression
or other types of generalized linear mixed models (GLMM). It’s even possible to combine
the power of mixed models with the nonlinear generalized additive models (GAM) mentioned
at the end of the last chapter, producing something called generalized additive mixed-effects
modeling (GAMM). All of this is thanks to the increasing power of personal computers,
required for running the estimation algorithms used by LME and GLMM and GAM and

Ch. 12: Mixed-effects modeling

2

GAMM. As with the older estimation algorithms for logistic regression, though, these
algorithms are prone to crashing, and they can also take a very long time to finish running
(hours or even days, for large data sets and complex models).
 But Spiderman’s words of wisdom still apply: with great power comes great responsibility.
As Matuschek et al. (2017, p. 305) admit, “The advantages of LMMs [linear mixed-effects
models] over ANOVAs come at a cost; setting up an LMM is not as straightforward as running
an ANOVA.” Barr et al. (2013, p. 277) put it more vividly: “At a recent workshop on mixed-
effects models, a prominent psycholinguist [G. T. M. Altmann] memorably quipped that
encouraging psycholinguists to use linear mixed-effects models was like giving shotguns to
toddlers.” In his own R-for-linguists book, Gries (2013) restricts his discussion of mixed
modeling to a few skeptical comments (p. 335):

[M]ixed-effects modeling is one of the most fascinating but also among the most
complex statistical techniques I have seen.... [I]ndeed the potential of this
approach is immense and far-reaching [but] I must admit that sometimes I think
that some of the hype about this method is a bit premature simply because so
many thing are still unclear. Ask any two or three experts on how to do X with
multi-level models, and you often get very different responses. Pick any two to
three references on mixed-effects modeling and you will see that not only is there
very little agreement on some seemingly central questions, but also that some
types of problems are not even mentioned very widely.

 With these warnings in mind, let’s see how we can make mixed-effects modeling work
for us!

2. Mixing effects

 Even though it took powerful computers to make it practical, mixing fixed and random
effects is actually a simple idea; even our friend the genius statistician Fisher (inventor of
ANOVA) was thinking along these lines. In this section we’ll first see how mixed-effects
modeling is related to, but differs from, repeated-measures regression, try it out on some
linguistic data, deal with some complexities (including the surprising fact that even the experts
can’t agree on the best way to compute the p values), and survey some of the ways we can plot
mixed-effects models.

Ch. 12: Mixed-effects modeling

3

2.1 Beyond repeated-measures regression

 Before we start mixing the fixed and random effects, let’s first review repeated-measures
regression, where the fixed and random effects are processed in separate steps.
 Consider the (fake) data in sploink.txt, which come from a longitudinal study on (fake)
Martian children. The research question is: as children get older (from two to four years), does
their (fake) “sploink” measure increase? This sounds like a job for linear regression, since both
the independent and dependent variables are numerical (and if sploink is a normal sort of
measure, it’s probably normally distributed).
 Indeed, if we plot the relation between Age and Sploink, it looks like there’s a positive
correlation (as in Figure 1):

sdat = read.delim("sploink.txt")
plot(sdat$Age, sdat$Sploink)
abline(lm(Sploink~Age, data=sdat))

Figure 1. Sploink increases with age

 But if we run an ordinary linear regression analysis on the data, nothing is significant, as
shown in Table 1.

summary(lm(Sploink ~ Age, data = sdat)) # Just showing fixed coefficients below

Table 1. Regression table produced by R for Sploink ~ Age, ignoring grouping by Child

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.750 3.778 0.993 0.329
Age 1.450 1.215 1.193 0.243

Ch. 12: Mixed-effects modeling

4

 If we make a trellis (網格) plot, with a separate plot for each child, we can see the problem:
while most children clearly show sploink rising with age, some children don’t. We can make
this plot a number of different ways, as shown in Figures 2-4.

Option 1: Do it with base R:
par(mfrow=c(2,5)) # Put 10 plots (one per child) into 2 rows and 5 columns
miny = min(sdat$Sploink); maxy = max(sdat$Sploink)
for (i in 1:10) {
 sdat.i = subset(sdat, sdat$Child==i)
 plot(sdat.i$Age, sdat.i$Sploink, ylim = c(miny, maxy), main = i)
}

Figure 2. By-child plots using base R

Option 2: Do it with the lattice package:
library(lattice) # You first have to make sure this package is installed, of course
xyplot(Sploink ~ Age | factor(Child), data = sdat)

Figure 3. By-child plots using lattice package

Ch. 12: Mixed-effects modeling

5

Option 3: Do it with the ggplot2 package:
library(ggplot2) # You first have to make sure this package is installed, of course
qplot(Age, Sploink, data = sdat, facets = ~Child)

Figure 4. By-child plots using ggplot2 package

 This result isn’t surprising, since the data here are repeated-measures: each child gives
three sploink values (one per age in that child’s data: 2, 3, 4). So let’s do a repeated-measures
regression. In the first step, we run a regression on each child separately and get the coefficient
for the intercept (overall sploink level for that child) and the coefficient (slope) for the predictor
age. In the second step, we run one-sample t tests on each of these sets of regression coefficients.
 Here’s a new version of the R code we used in the multiple regression chapter. Note that
running it generates the warning “essentially perfect fit: summary may be unreliable” because
each of the individual child analyses contains so few data points (just three) that the regression
analysis gets suspicious (maybe you remember that the algorithm totally crashes if you try to
simulate a paired t test using repeated-measures regression). They’re just warnings, though, so
let’s just ignore them so we can finish this example:

n = length(unique(sdat$Child)) # Number of children
b0 = numeric(n) # For the by-unit intercepts (empty for now)
b1 = numeric(n) # For the by-unit coefficients for Age (also empty at the start)
for (i in 1:n) {
 lm.i = lm(Sploink~Age,data=subset(sdat,sdat$Child==i))
 b0[i] = summary(lm.i)$coefficients[1,1] # Put in child i's intercept coefficient
 b1[i] = summary(lm.i)$coefficients[2,1] # Put in child i's coefficient for Age
}
Mean = coefficients; also gives df, t, and p
t.test(b0) # Mean = coefficients; also gives df, t, and p

Ch. 12: Mixed-effects modeling

6

 One Sample t-test

data: b0
t = 2.0554, df = 9, p-value = 0.07
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.3771502 7.8771502
sample estimates:
mean of x
 3.75

as.numeric(mean(b0)/t.test(b0)$statistic) # Gives SE

[1] 1.824431

Slope results:
t.test(b1) # Mean = coefficients; also gives df, t, and p

 One Sample t-test

data: b1
t = 2.4422, df = 9, p-value = 0.03723
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 0.1069186 2.7930814
sample estimates:
mean of x
 1.45

as.numeric(mean(b1)/t.test(b0)$statistic) # Gives SE

[1] 0.7054467

 Copy/pasting the text reports into the R-style regression report in Table 2, we see that
repeated measures regression gives us exactly the same coefficients as ordinary regression
(compare with Table 1 above), but the SE values are lower, since we’ve factored out the noise
of cross-Child variation. This makes the t values higher and the p values lower. In fact, Age is
now found to have a significant effect.

Table 2. A hand-made R-style regression table for Sploink ~ Age, grouped by Child

 Coefficient SE t df p
(Intercept) 3.75 1.824431 2.0554 9 0.07 .
Age 1.45 0.7054467 2.4422 9 0.03723 *

 Now see what we get when we analyze the same data as a repeated-measures ANOVA,
treating Child as a grouping variable. This actually an ANCOVA (analysis of covariance),

Ch. 12: Mixed-effects modeling

7

since the predictor is a numerical variable, not a factor. The results are in Table 3. Note the
highlighted values and compare them with the highlighted values in Table 2.

summary(aov(Sploink ~ Age + Error(factor(Child)/Age), data = sdat))

Table 3. Repeated-measures AN(C)OVA for Sploink ~ Age, grouped by Child

Error: factor(Child)

 Df Sum Sq Mean Sq F value Pr(>F)
Residuals 9 760 84.45

Error: factor(Child):Age

 Df Sum Sq Mean Sq F value Pr(>F)
Age 1 42.05 42.05 5.965 0.0372 *
Residuals 9 63.45 7.05

Error: Within

 Df Sum Sq Mean Sq F value Pr(>F)
Residuals 10 3.167 0.3167

 I hope you are not surprised to see (since this is just a review of stuff we’ve discussed
before) that F = 5.965 for Age in the repeated-measures ANOVA is the square of t2 = 5.964341
for Age in the repeated-measures regression, and the p values are identical.
 We can extract the significant effect of Age because we’ve also pulled out the systematic
effect of the cross-Child differences. The repeated-measures regression expresses this as the
intercept (reflecting the “default” response of each child), and the repeated-measures ANOVA
expresses this with the first ANOVA report table in Table 3 labeled “Error: factor(Child)”. A
second reason for the increased power compared to ordinary regression is that the Age effect
is modeled as an interaction between Child and Age. The second ANOVA report table in Table
3 expresses this explicitly with the label “Error: factor(Child):Age” (“:” = “×” here), and in the
repeated-measures regression reported in Table 2, the t value for Age is actually an analysis
across Child for each child’s Age effect.
 Now let’s compare this repeated-measures analysis with a mixed-effects analysis, which
processes the random effect of Child and the fixed effect of Age in the same model, instead of
processing them in separate models and steps.
 The oldest R package for mixed-effects modeling is nlme (Pinheiro & Bates, 2000), which
stands for “non-linear mixed-effects” (since it also handles loglinear models like mixed-effects
logistic regression). Few researchers use this package anymore (but see Johnson, 2008, for a
simple tutorial), since it has been superseded by the much more powerful lme4 package (Bates
et al., 2015), which gets its weird name from the fact that it was originally inspired by version
4 of S (remember that this is R’s original, non-free, version). We’ll be using lme4 in most of
this chapter, but I have a pedagogical reason to start our discussion with nlme.

Ch. 12: Mixed-effects modeling

8

 So let’s install and load the nlme package:

library(nlme)

 The key function is lme() (for “linear mixed effects”). The syntax of this function
expresses the fixed part of the analysis using the familiar formula syntax, and the random part
using the random argument, which has the syntax ~WithinVariable | GroupingUnit (reverse
of aov()’s Error(GroupingUnit/WithinVariable) syntax). In our case, the grouping unit is
Child (which lme() is smart enough to convert to a factor for us, unlike aov()) and the within-
group variable is Age. Thus we can build and summarize the model like this:

sdat.lme = lme(Sploink~Age, random = ~Age|Child, data=sdat)
summary(sdat.lme)

 The summary includes a lot of stuff, but let’s just look at the part we most want to see
(since we’re going to redo all this with the lme4 package anyway). That of course is the
regression table for the fixed effects (i.e., the overall intercept and Age effect), as shown in
Table 4. Note that the coefficients and t values are exactly the same as repeated-measures
regression (compare with Table 2), but the p values are lower due to the lower SE and higher
df values:

Table 4. Mixed-effects model of Sploink ~ Age, grouped by Child, using lme() in nlme

Fixed effects: Sploink ~ Age

 Value Std.Error DF t-value p-value
(Intercept) 3.75 1.8244313 19 2.055435 0.0538
Age 1.45 0.5937171 19 2.442241 0.0245

 The df values for repeated-measures regression in Table 3 were based on the number of
grouping units, using the usual one-sample t test df formula, where g = number of grouping
units (in our case, 10 kids, so df = 9 in Table 3):

One-sample t test df formula: df = g - 1

 By contrast, the df values used by the lme() function are calculated using the formula
below, from Pinheiro & Bates (2000), where N = total observations (30 for the sploink data),
g = number of grouping units (e.g., 10 children in the sploink data), and k = number of
parameters (1 in the sploink data: Age). So the value that has the greatest effect on df is N. This
df formula results from the one-step approach taken by LME: Pinheiro & Bates (2000) argue

Ch. 12: Mixed-effects modeling

9

that this means that there should be a single df for all fixed effects (see discussion about this in
Bates, 2006).

lme() df formula: df = N - g - k

 The summary for lme() also includes the standard deviations of the random intercept
(5.6351) and random slope (1.8348), which are suspiciously close to the standard deviations
for the intercept and Age effect in the repeated-measures regression (sd(b0) == 5.769, sd(b1)
== 1.877). The lme() summary reports the standard deviation for the residuals as well (0.5627).
Since repeated-measures regression is the same as repeated-measures ANOVA, and ANOVA
is based on variance (calling it MS for mean sum of squares), and variance is just the square of
standard deviation (s2), we can compare these three values across the ANOVA and LME
reports, as shown in Table 5. These “noise” values in the LME for the Child intercepts and
Child × Age interactions (random slopes) are lower than those in both repeated-measures
regression and ANOVA.

Table 5. Partialling variance in ANOVA and LME

 ANOVA LME
Component Label MS (s2) Label s s2
Cross-Child
means for
Sploink

Error: factor(Child)
Residuals

84.45 Random
effects:
(Intercept)

5.635 31.755

Cross-Child
slopes for
Age

Error:
factor(Child):Age
Residuals

7.05 Random
effects:
Age

1.835 3.367

Overall
residuals

Error: Within
Residuals

0.3167 Random
effects:
Residual

0.563 0.3167

 Less noise means more power: LME extracts more information from the sploink data than
repeated-measures ANOVA.

2.2 More about the math of mixed-effects modeling

 Maybe the easiest way to think about how mixed-effects modeling works is to think about
how you could fake some realistic data. Suppose you’re teaching a statistics class and want to
make a data set that’s supposed to come from a study on 10 Martian children, each producing
sploink values at three different ages. How could we make this data set seem realistic? If you
think about it carefully, you can see that each sploink value actually depends on six different
types of things: totally random noise, the default sploink value (when age = 0), the overall

Ch. 12: Mixed-effects modeling

10

effect of age, each child’s default sploink value (i.e., whether that child is a low or high
sploinker in general), each child’s sensitivity to the fixed effect (i.e., whether that child sploinks
equally at all ages, or more when young, or more when old), and random noise in the behavior
of that individual child.
 Each child’s default value and sensitivity to age are called the random intercept and the
random slope, respectively. This is because, just as in repeated-measures regression (or
ANOVA or ANCOVA), conceptually each child has his or her own regression equation, like
this:

Equation for each child i: Sploink = βi0 + βi1Age + Errori

 In a repeated-measures analysis, as we’ve seen, we fit separate models like this to every
grouping unit (here, each child), and then run one-sample tests across all of the random
intercepts (βi0) and random slopes (βi1) to see if the overall values are significantly different
from the null hypothesis of 0. Thus the repeated-measures regression/AN(C)OVA approach
actually involves two different levels of regression equations, one dealing with the fixed effects
(like Age) and one dealing with the random effect (like Child).
 By contrast, in a mixed-effects analysis, we go back to the original concept and just add
up all six things together in one equation (hence the names “mixed-effects” modeling or “multi-
level” modeling). In the equation below, the Bs represent the fixed intercept and slope, the
betas represent the random intercepts and random slopes, and the is represent the kids:

Mixed equation for all data: Sploink = B0 + B1Age + Error + βi0 + βi1Age + Errori

 Because of the two different kinds of coefficients, there’s no simple formula for
computing them. Thus just as with logistic regression, we have to loop through many iterations,
incrementally adjusting the coefficient values up and down until the algorithm decides that our
fit isn’t getting any better, or that we’ve run out of our preset loops.
 The challenge posed by mixed-effects modeling is even harder than for logistic regression,
though, because of the multiple sources of random error. This means we can’t use the kind of
maximum likelihood estimation (MLE) used for logistic regression, but instead must use an
approximate version called restricted, residual, or reduced maximum likelihood (all
abbreviated as REML). The trick used by REML is to model only the crucial contrasts instead
of all of the raw data all at once; that is, it cheats, kind of how minF' cheats by estimating F'
under artificially simple assumptions (cheating is common in statistics!).
 Here’s another thing you should know about those random slopes and intercepts. It doesn’t
make sense to talk about the fixed intercept and slope being correlated, since there’s only one
overall best-fit line, but since there are many of grouping units, their random slopes and

Ch. 12: Mixed-effects modeling

11

intercepts may indeed be correlated. For example, suppose that the mean sploink value for
every child is the same, but the children differ in their random intercepts and random slopes. If
you think about this geometrically, this implies that even if some best-fit lines are flat, others
are rising, while others are falling, they will still all cross each other somewhere in the middle
(the mean on the y-axis). This in turn implies that the random intercepts and random slopes are
correlated; for example, for observed x and y values all above zero, a rising best-fit line means
that the intercept is low, and a falling line means that the intercept is high (can you picture it?).
This adds another bit of complexity to mixed-effects modeling: the potential collinearity among
the random coefficients makes it even more difficult to figure out their “true” values.
 Such complexities are why Fisher’s old multilevel dreams had to wait until computers got
fast enough to run the estimation algorithms. If you want to learn more about the math, take a
look at Pinheiro and Bates (2000) or Vasishth and Broe (2011); the latter is a bit less technical.

2.3 The lme4 package and the great p value debate

 Now let’s do this exact same LME analysis using the more powerful and popular lme4
package. Once we’ve installed it on our computer, we have to load it:

library(lme4) # That's right, you gotta install it first

 Now the key function is lmer() (where the “r” stands for “regression” or “the R language”;
its inventors say it’s pronounced like the English male name “Elmer”). The syntax is a bit
different from that of lme(), incorporating the random parts into the formula notation itself, to
reflect the fact that fixed and random effects are modeled together. Now the random part is
expressed in the formula inside parentheses, as (WithinVariable|GroupingUnit). So in the
case of the sploink data set, this part of the formula would say (Age|Child). Again, there’s no
need to tell lmer() that Child is actually a categorical factor.
 Let’s try it out:

sdat.lmer = lmer(Sploink ~ Age + (Age|Child), data = sdat) # No need for as.factor!
summary(sdat.lmer)

 The results are shown in Table 6, again focusing for now just on the coefficients table for
the fixed effects.

Table 6. Mixed-effects model of Sploink ~ Age, grouped by Child, using lmer() in lme4

Fixed effects:

 Estimate Std.Error t value
(Intercept) 3.7500 1.8245 2.055
Age 1.4500 0.5937 2.442

Ch. 12: Mixed-effects modeling

12

 Note that the fixed effects table gives the same coefficients as we got with nlme’s lme()
function (see Table 4) above, as well as the same SE and t values.
 But wait a minute! Where are the p values?
 Welcome to the world of cutting-edge statistics! It turns out that the way p values are
calculated in the nlme package is controversial, because the degrees of freedom (df) are
controversial (they’re also missing in Table 6). Why? Well, both of R’s LME packages were
(co)written by one guy, Douglas Bates, and his approach to df, expressed in Pinheiro & Bates
(2000), conflicts with the default originally assumed by SAS, a highly influential “not-free”
statistics program. The current version of SAS actually allows the user to choose among five
competing df values (Bell et al., 2013)! This is because it’s not clear whether we should use
the same df for everything (as argued by Pinheiro & Bates, 2000, and assumed by nlme), or
vary df depending on the particular fixed and/or random variables that we’re testing.
 So how can we get “uncontroversial” p values using the lmer() function? Here are a few
different ways.
 The simplest but least reliable method is to pretend that the t values are actually z values,
so we don’t need to worry about df. After all, logistic regression uses z values regardless of
sample size, so why not here? We can calculate these p values using pnorm():

intercept.p = 2*pnorm(-2.055) # 0.039879
Age.p = 2*pnorm(-2.442) # 0.01460615

 The sploink sample is very small, so the p values here are definitely too low (a Type I
error); they’re even lower than those given by nlme’s lme() function. But since t → z as n →
∞, this method should be OK for large samples, especially if Pinheiro & Bates (2000) are
basically right to claim that the major influence on df is the total number N of data points, not
the number of grouping units or the number of model parameters, which will always be much
smaller than N.
 A second method is slightly harder: we use the anova() function to run a likelihood ratio
test on our full model vs. models missing each parameter. This is pretty easy to do with a simple
model like the one for sploink, producing the results in Table 7:

sdat.lmer.noAge = lmer(Sploink ~ 1 + (Age|Child), data = sdat)
anova(sdat.lmer.noAge, sdat.lmer) # Tests significance of Age

Table 7. Using a likelihood ratio test to test the significance of Age

 Df AIC BIC logLik deviance Chisq Chi
Df

Pr(>Chisq)

sdat.lmer.noAge 5 148.30 155.31 -69.150 138.30
sdat.lmer 6 145.22 153.62 -66.608 133.22 5.0846 1 0.02414 *

Ch. 12: Mixed-effects modeling

13

 But the third and best method is to install the package afex (pun for “effects”; Singmann,
2014). This package automatically loads lme4 for you; in fact, the creators recommend loading
afex first, especially if your version of lme4 is out of date. If you’ve been following along with
the R code so far, you’re already running lme4. So let’s first unload it:

detach("package:lme4", unload=TRUE)

 Now we load afex:

library(afex) # Install it first, and let it load lme4 for you

 Now when we use the lmer() function, the afex package will compute p values for us
(technically this is done via the lmerTest package [Kuznetsova et al., 2017], run by the afex
package), by default using something called the Satterthwaite approximation (Satterthwaite,
1946), which, as you can guess from the publication date, was invented long before mixed-
effects modeling. In fact, it’s related to the Welch test that we used for unpaired t tests without
assuming equal variance (hence the follow-up on related methods in Welch, 1947). Basically,
it takes the df used by Pinheiro & Bates (2000) and lowers it, in an attempt to avoid Type I
errors. Here we go:

sdat.lmer.S = lmer(Sploink ~ Age + (Age|Child), data = sdat)

 Using the summary() function on this gives us the usual lmer() report, but now with df
and p values, as shown in Table 8 (note also the text at the start of the R output saying that
Satterthwaite’s method was used):

summary(sdat.lmer.S)

Table 8. Using the Satterthwaite approximation to test the significance of Age

Fixed effects:

 Estimate Std.Error df t value Pr(>|t|)
(Intercept) 3.7500 1.8245 8.9996 2.055 0.0700 .
Age 1.4500 0.5937 8.9996 2.442 0.0372 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 The df values of 8.9996 are adjusted quite a bit downward from what the simple Pinheiro
& Bates (2000) formula would give us (df = N - g - k = 30 - 10 - 1 = 19). The p value is also
slightly higher than what we got with the likelihood ratio test, but it’s still significant anyway.

Ch. 12: Mixed-effects modeling

14

We could report the Age effect as B = 1.45, t(9) = 2.4, p < .05 (clarifying in the text of our
report that the p value is based on the Satterthwaite approximation).
 Besides the Satterthwaite method, the afex package also gives you other ways to estimate
p values for linear mixed-effects models, including an automatic application of the likelihood
ratio test, the Kenward-Roger approximation (Kenward & Roger, 1997; Judd et al., 2012),
which uses the Satterthwaite method but besides adjusting the df also adjusts the F ratio (which
is related to the t value, as you remember), and a parametric bootstrap method that estimates
p values by resampling many times from a normally distributed null hypothesis population
specified by your data and model formula. If you ever want to try these non-defaults, use the
special afex function mixed(), which works sort of like lmer() except that it lets you include
the argument method (method="S", method="LRT", method="KR", method="PB").
Other differences are that it gives you p values for the effects (though not the intercept) directly,
without using summary(), and that they’re computed (again via the lmerTest package) an
ANOVA (or even analysis of deviance) table rather than a regression table (recall from the
multiple regression chapter how these approaches are related).
 But let’s not bother with these other options, for three reasons. First, the Satterthwaite
approximation is the most sensitive (i.e., it gives the lowest p values, though this potentially
brings a risk of Type I errors), and it is also the most flexible, applicable not just to REML but
also to ML (i.e., the ordinary maximum likelihood logic used in ordinary regression and stuff
like t tests - hence the Welch link). The Kenward-Roger approximation and bootstrap method
may be slightly more accurate, but the former is somewhat harder to report as a regression
(being based on F instead of t) and the latter can run very slow (resampling requires a lot of
looping and recalculating). Second, getting the output in an ANOVA table is less useful than
getting it in a regression table, since the ANOVA table doesn’t report results for the intercept
or show the coefficients, which, as we’ve seen, tell us something about effect direction and
size. Third, and most important, if your sample is large and normal enough, which it should be
anyway when doing parametric statistics, any reasonable way to compute the p values should
give you pretty much the same result, unless your p values are just at the edge of significance
(e.g. p = .049), but in that case you should be cautious in interpreting your results anyway: the
alpha level is just an arbitrary convention, not something out there in the real world.

2.4 Plotting mixed-effects models

 One natural way to plot an LME is to use the trellis plots we saw at the beginning of this
chapter. But this can take a lot of space (a separate plot for each participant) and requires the
viewers to find the overall pattern themselves.
 If you want a single plot for the entire data set, it’s often safe to use the best-fit line for an
ordinary linear regression, since this tends to be similar to that for an LME analysis of the same

Ch. 12: Mixed-effects modeling

15

data, as we saw with the sploink example. However, this isn’t guaranteed. You can get a sense
of how these best-fit lines can differ by simulating a bunch of random data sets for y~x and
comparing the two estimates of the x slope coefficient, as in Figure 5.

set.seed(1) # So you get the same results as I do
g=rep(1:10,10) # 10 grouping units for 100 data points in each data set
lm.coefs = numeric(20) # space for 20 ordinary linear model coefficients
lme.coefs = numeric(20) # space for 20 linear mixed-effects model coefficients
for (i in 1:20) { # Create 20 random data sets
 dat = data.frame(y=rnorm(100), g, x=runif(100))
 lm.i = lm(y~x, data = dat) # Ordinary linear model
 lm.coefs[i] = summary(lm.i)$coefficients["x",1] # lm coefficient for x
 lme.i = lmer(y~x + (x|g), data = dat) # Mixed-effects model
 lme.coefs[i] = summary(lme.i)$coefficients["x",1] # lmer coefficient for x
}
plot(lm.coefs,lme.coefs) # Not a perfectly straight line (i.e., not fully identical)

Figure 5. The not-totally-perfect fit between ordinary and mixed-effects regression

 Like the lm() function, lmer objects can be put inside the predict() function to generate
the predicted values (y-hat: ŷ). But unlike lm(), it doesn’t draw a single line (or plane), since
it’s unclear how to incorporate the fixed and random effects into one plot. Instead, it gives you
the observation-by-observation predictions, as shown in Figure 6 for the sploink data. This is
useful for visually checking the fit of your model, but doesn’t show your audience the overall
linear trend.

plot(sdat$Age, sdat$Sploink, ylim=c(0,20)) # observed values (large white dots)
points(sdat$Age, predict(sdat.lmer), pch=20) # predicted values (small black dots)
legend("topright", pch=c(1,20), legend=c("Observed","LME predictions"))

Ch. 12: Mixed-effects modeling

16

Figure 6. The observed and predicted sploink values across different children

 One way to draw a single best-fit line for LME is to use predict() to plot the by-unit
predictions. For the sploink data this happens to be the same as for the ordinary linear model,
as can be seen by the perfectly overlapping best-fit lines in Figure 7.

plot(sdat$Age, sdat$Sploink, ylim=c(0,20))
xvals = sort(unique(sdat$Age)) # The three ages, in order
pred.mat = matrix(predict(sdat.lmer),nrow=3) # Predicted values as a 3 x 10 matrix
yvals = apply(pred.mat,1,mean) # Means of rows (i.e., means across 10 children)
lines(xvals,yvals) # Fit line for LME
abline(lm(Sploink~Age, data=sdat), lty=2, lwd=3) # Fit for ordinary linear model
legend("topright", lty=c(1,2), lwd=c(1,3), legend=c("LME","ordinary lm"))

Figure 7. The ordinary and mixed-effects regression best fit lines for the sploink data

Ch. 12: Mixed-effects modeling

17

 But why struggle? There’s a much easier way to plot a mixed-effects model: simply use
the effects package again. Just as with lm and glm and aov objects, this package lets us plot an
lmer object using plot(allEffects(...)), as in Figure 8. By the way, note the huge confidence
band, reflecting how unreliable our data are, given that each child only provided three data
points.

library(effects) # You should have installed it by now
sdat.lmer = lmer(Sploink ~ Age + (Age|Child), data = sdat) # In case you forgot
plot(allEffects(sdat.lmer))

Figure 8. An effects plot for the sploink data based on LME

3. Revisiting the language-as-mixed-effects fallacy

 As I’ve promised since the chapter on repeated-measures ANOVA, one big advantage of
LME is that deals with the language-as-fixed-effect fallacy of Clark (1973) better than Clark’s
own proposal of minF'. Let’s see how it works in easy situations, and then explore some of the
dark underbelly of LME (convergence problems, crashes, and more controversies)

3.1 Two random variables

 Let’s go back to the data in dormiR.txt, reporting the results of an experiment run by
Dorami (the sister of Doraemon) that looked at how Martian reaction times are affected by
education level (between participants but within items), syntactic category (within participants
but between items), and lexical frequency (also within participants but between items), all

Ch. 12: Mixed-effects modeling

18

treated as categorical factors. Note that some data are missing, so even though this data set
comes from a factorial experiment, it’s not balanced (a common real-life situation).

ddat = read.delim("doramiR.txt")
ddat = na.omit(ddat) # Some data is missing, so let's clear out the NA's

 We have two random variables: participants and items. If we try to use aov() on the whole
data set, using two Error() terms, it just gives us an error message:

ddat.aov = aov(RT~Education*SynCat*Freq # Fixed part
 + Error(as.factor(Participant)/(SynCat*Freq)) # By participant
 + Error(as.factor(Item)/Education), # By item
 data = ddat)

Error in aov(RT ~ Education * SynCat * Freq + Error(Participant/(SynCat * :
 there are 2 Error terms: only 1 is allowed

 One big advantage of the lme4 package lmer() function is that it can handle more than
one random variable (unlike the lme() function in the nlme package). Thus we can test by-
participants and by-items analyses in a single model, just as Clark dreamed of.
 For comparison, here’s how we did the minF' analysis for Freq, which was the only
variable that was significant both by participant and by item. As before, we’ll skip the usual
lognorming step for RT, and ignore the Pair variable.

attach(ddat) # To save space below
ddat.part = aggregate(RT, list(Participant, Education, SynCat, Freq), mean)
colnames(ddat.part) = c("Participant","Education","SynCat","Freq","RT")
ddat.item = aggregate(RT, list(Item, Education, SynCat, Freq), mean)
colnames(ddat.item) = c("Item","Education","SynCat","Freq","RT")
detach(ddat) # Always remember...
ddat.part$Participant = as.factor(ddat.part$Participant) # Don't forget!!!
bypart.aov = summary(aov(RT~Education*SynCat*Freq
 +Error(Participant/(SynCat*Freq)), data = ddat.part))
ddat.item$Item = as.factor(ddat.item$Item) # Don't forget!!!
byitem.aov = summary(aov(RT~Education*SynCat*Freq
 +Error(Item/Education), data = ddat.item))
F1.Freq = bypart.aov[[3]][[1]][1,4] # 3rd table, 1st part of it, 1st row, 4th column
dfnum1 = bypart.aov[[3]][[1]][1,1] # etc
dfdenom1 = bypart.aov[[3]][[1]][3,1]
F2.Freq = byitem.aov[[1]][[1]][2,4]
dfdenom2 = byitem.aov[[1]][[1]][4,1]
Finally, the minF' results:
minF = (F1.Freq*F2.Freq)/(F1.Freq+F2.Freq)
dfnum.minF = dfnum1
dfdenom.minF = (F1.Freq+F2.Freq)^2/(F1.Freq^2/dfdenom2 + F2.Freq^2/dfdenom1)
pf(minF,dfnum.minF,dfdenom.minF,lower.tail=F)

Ch. 12: Mixed-effects modeling

19

[1] 0.03604612

 After all that work, it just gives us one little number: the minF'-based p value. We could
report this as minF'(1, 30.05) = 4.82, p = .036, but nobody uses minF' anyway.
 LME is much easier to run on Dorami’s data. To imitate what we tried to do above, we
would run a so-called maximal model, which is just like a typical ANOVA analysis in
including all of the fixed-effect interactions and random intercepts and random slopes, making
sure that we group the fixed effects properly within their units.
 In the R code below, I first recode the factors using effect coding (using the contr.sum()
function), to make the interactions act as they do in an ANOVA (remember that by default, R
uses dummy coding for regression factors).
 Moreover, now that you’ve learned a bit about the math of mixed-effects modeling, I can
tell you a bit more about the syntax behind the random parts. In particular, the notation
(Education|Item) is actually short for (1+ Education|Item), which represents a regression
equation showing the Item random intercept (1) and random slope (Education). Since the thing
to the left of | is a formula (unlike in Error(...) for aov()), we don’t need parentheses around
SynCat*Freq as we do for the by-participants ANOVA. If we wanted to test only the random
intercepts, we would write the by-items random part as (1|Item). If we wanted to test only the
random slopes, we would write it as (0+Education|Item), since as we saw in the regression
chapter, in R’s formula syntax “adding” a zero is how to represent a model without an intercept.
Finally, since random intercepts and random slopes may be correlated, we can tell the model
to ignore this correlation by adding up these two random components separately: (1|Item) +
(0+Education|Item). This is a so-called zero-random-correlation model (we’ll come back
to this concept later).
 But in this case, we just want to mimic the ANOVA analysis, which does include
something like random slopes (as expressed in the Error(...) part), so we’ll stick with the
maximal model. For this demo, let’s make sure the afex package isn’t interfering (so we get
the “pure” p-less lmer() report):

detach("package:afex", unload=TRUE) # In case you were still running it
library(lme4) # Just in case it's not running

ddat = read.delim("doramiR.txt", stringsAsFactors=T) # To make sure they're factors
ddat = na.omit(ddat) # Since some data are missing
contrasts(ddat$Education) = contr.sum(levels(ddat$Education)) # 1 = College
contrasts(ddat$SynCat) = contr.sum(levels(ddat$SynCat)) # 1 = Noun
contrasts(ddat$Freq) = contr.sum(levels(ddat$Freq)) # 1 = High
ddat.lmer = lmer(RT~Education*SynCat*Freq # Fixed part
 +(SynCat*Freq|Participant)+(Education|Item), data = ddat) # Random parts

 Running the last command gives us a warning that we’ll ignore for now, and then we
generate the summary (this time, the whole thing):

Ch. 12: Mixed-effects modeling

20

summary(ddat.lmer)

Table 9. A maximal LME model of the Dorami data

Linear mixed model fit by REML [‘lmerMod’]
Formula: RT ~ Education * SynCat * Freq + (SynCat * Freq | Participant) + (Education | Item)
 Data: ddat

REML criterion at convergence: 5016.7

Scaled residuals:

Min 1Q Median 3Q Max
-1.8515 -0.6317 -0.2075 0.4085 3.9700

Random effects:

Groups Name Variance Std.Dev. Corr

Participant (Intercept) 635.1 25.20

 SynCat1 239.3 15.47 1.00

 Freq1 185.0 13.60 -1.00 -0.99

 SynCat1:Freq1 1095.9 33.10 0.05 0.13 0.03

Item (Intercept) 1188.2 34.47

 Education1 844.7 29.06 -0.33

Residual 27146.4 164.76

Number of obs: 386, groups: Participant, 20; Item, 20

Fixed effects:

 Estimate Std.Error t value
(Intercept) 742.9592 12.7177 58.419
Education1 -0.4537 12.0235 -0.038
SynCat1 18.4146 11.917 1.545
Freq1 -30.67 11.803 -2.598
Education1:SynCat1 1.1824 11.1731 0.106
Education1:Freq1 17.7279 11.0514 1.604
SynCat1:Freq1 5.7752 13.5957 0.425
Education1:SynCat1:Freq1 -3.0658 12.9486 -0.237

Correlation of Fixed Effects:
 (Intr) Edctn1 SynCt1 Freq1 Ed1:SC1 Ed1:F1 SC1:F1
Education1 -0.114
SynCat1 0.131 0.006
Freq1 -0.112 0 -0.071
Edctn1:SyC1 0.006 0.148 -0.131 -0.006
Edctn1:Frq1 0 -0.126 -0.006 -0.134 -0.081
SynCt1:Frq1 0.016 -0.005 0.023 0.007 0 0.006
Edc1:SC1:F1 -0.005 0.017 0 0.005 0.026 0.007 -0.099
optimizer (nloptwrap) convergence code: 0 (OK)
Model failed to converge with max|grad| = 0.0147632 (tol = 0.002, component 1)

Ch. 12: Mixed-effects modeling

21

 We’ll look first at the results for the fixed effects, concentrating on the line starting Freq1
(that is, High Freq vs. Low Freq, since H comes before L in the alphabet, which is how R does
effect coding). It was the only parameter significant in both the by-subject and by-item
ANOVA models, and it’s also the parameter that we derived the minF' p value for. Is it
significant by this LME model?
 You can already get a sense of this from the magnitude of the |t| value, above the critical
value of 1.96 for the t = z method; since the number of observations is 386, it seems reasonably
safe to assume that no matter what formal method we use to compute the actual p value, it will
be below .05. Let’s see:

2*pnorm(-2.598)

[1] 0.009376849

 To be more confident about this conclusion, let’s compute the p values using the
Satterthwaite method (ignoring the warnings again):

detach("package:lme4", unload=TRUE) # To allow afex to load it for us
library(afex)
ddat.lmer.p = lmer(RT ~ Education * SynCat * Freq + (SynCat*Freq|Participant)
 + (Education|Item), data = ddat)
summary(ddat.lmer.p)

 Here’s the result it gives for Freq:

Fixed effects:

 Estimate Std.Error df t value Pr(>|t|)
...
Freq1 -30.6700 11.8030 16.5385 -2.598 0.019 *
...

 As expected, since our sample is kind of large, this more accurate p value is still quite
close to what we got with the t = z method. The other fancier methods (the Kenward-Roger
approximation or parametric bootstrapping) are thus not worth trying, since the results will be
pretty much the same as well.
 Before I finish this section, we should take a look at the rest of the summary report we get
for lmer(), besides the fixed effects coefficients. If you look back at Table 9, you’ll see that
the first thing the report says (after repeating the model formula) is the final REML value of
5016.7, which is related to the model likelihood that the LME algorithm is trying to maximize
as it iterates through various coefficient values, but it has no useful meaning otherwise. Then
it shows the scaled residuals, which should be normally distributed; maybe there’s some skew

Ch. 12: Mixed-effects modeling

22

or outliers or hidden variables here, since the minimum (-1.8515) is not the exact inverse of
the maximum (3.9700); Dorami might want to look into this (but not us).
 Next we see the results for the random variables. Instead of showing us their coefficients,
it shows their variances, or more accurately, what the model thinks are their variances. As we
saw in the math discussion above, the mixed-effects model represents the random part in terms
of sets of coefficients (the βi values), or more accurately, in terms of the parameters of a
distribution of imaginary coefficients of this sort. So this stuff is useful in the computation of
LME but I don’t think we humans need to care about it much.
 The random part of the report also shows the correlations expected among these random
variables, that is, if we collected more samples from the same population and ran the same
model on them, we’d expect the new coefficients to correlate with these. These values are
potentially useful, since they help indicate if the model is too complicated. For example, for
our analysis, the random correlations are quite high, even reaching perfect correlations of the
random intercept with the SynCat and Freq random slopes. This implies that there’s no point
for the model to include both random intercepts and random slopes for these predictors, since
one is totally predictable from the other. Thus a simpler model that uses just one or the other
may fit the data well enough, or perhaps a zero-random-correlation model, that keeps both but
doesn’t bother modeling the correlation (again, we’ll come back to this soon).
 Next, we get a helpful reminder of our data size; I used the number of observations to
make my guess that Freq is probably significant, since this seems like a relatively large N, from
the perspective the Central Limit Theorem:

Number of obs: 386, groups: Participant, 20; Item, 20

 Then there’s the fixed-effects coefficients, which we’ve already discussed, and finally the
expected correlations of the fixed variables, which has the same interpretation as for the
random-effect correlations, namely, they don’t describe collinearity in our data set, but rather
predictions about how models derived from the same population will vary in their coefficients
(which, again, Dorami might want to worry about).
 The final lines explain why we got a warning when we built the model, namely that the
model failed to converge (though we’re also told that this is “OK”). We’ll come back to this
commonly encountered issue later.

optimizer (nloptwrap) convergence code: 0 (OK)
Model failed to converge with max|grad| = 0.0147632 (tol = 0.002, component 1)

 What about effect size for LME models? Is there any way to compute something like R2
to tell us how much of the variance in the dependent variable is explained by the model? That’s
another one of those things beset by controversy, but one simple idea is to compute the simple

Ch. 12: Mixed-effects modeling

23

Pearson’s correlation between your raw data and the values predicted by your model, and
squaring that. The better your predictions match the data, the closer this value will be to 1. This
is not mathematically identical to what R2 means for ordinary multiple regression (i.e., we can’t
assume that this value is the best way to represents the proportion of variance explained by
your model), but at least it’s very simple to compute and uses familiar old concepts. Here’s
what we get for the Dorami LME model:

cor(ddat$RT, predict(ddat.lmer))^2

[1] 0.2661778

 This fit isn’t great: the model only explains about 27% of the variance in the reaction
times. This isn’t surprising, given that most of the variables aren’t significant: most of Dorami’s
data live in the land of residuals. She needs to get back to the lab!
 More accurate values are available if we use the r.squaredGLMM() function in the
MuMIn package, which stands for “Multi-Model Inference” (Bartoń, 2022):

library(MuMIn) # Get that capitalization straight!
r.squaredGLMM(ddat.lmer)

 R2m R2c
[1,] 0.04976091 0.176602

Warning message:
'r.squaredGLMM' now calculates a revised statistic. See the help page.

 See the help page, eh? All right....

?r.squaredGLMM

 Ah, it says they just changed the way these values are calculated from an older version of
the package, but since we never used the older version, we don’t need to know the history. If
you’re curious, the current version uses methods developed by Nakagawa & Schielzeth (2013),
Johnson (2014), and Nakagawa et al. (2017). The reason it gives two R2 values instead of just
one is because “R2m” stands for the “marginal” R2 that represents the variance explained just
by the fixed factors, whereas “R2c” stands for the “conditional” R2 representing the variance
explained by the whole model, including the random factors. And indeed, the value we get for
R2m is pretty close to what we get for a linear model without any random factors at all:

ddat.lm = lm(RT~Education*SynCat*Freq, data = ddat) # Only fixed factors
summary(ddat.lm)$adj.r.squared
[1] 0.03422124

Ch. 12: Mixed-effects modeling

24

 Even though R2c isn’t huge either (.177, or about 18% of the variance is explained), it’s
still larger than the R2m value that ignores the random factors.
 You can also compute Cohen's d for mixed-effects models, though it takes some work.
I’m not sure, but maybe no built-in R package handles this yet...? If not, you can try this guy’s
homemade function: https://gist.github.com/jrosen48/00031865396cc855c9702e2b49a35fee.
 How would such a function work? Well, do you remember, in the t test chapter, where we
computed the difference in the two sample means and then divided by (something like) the
standard deviation? Cohen’s d is a number that reflects the size of a contrast relative to the
noisiness of the data, where by convention, d < .2 is taken as indicating a small effect and d
> .8 indicates a big effect. According to Westfall et al. (2014) the same idea works here.
 As with t tests, Cohen’s d is relatively easy to compute for LME: we divide the contrast
you care about (e.g., the difference in the mean RTs for high vs. low frequency words) by the
square root of the sum of all of the variance in the model, including random intercepts, random
slopes, and residuals (not associated with any grouping variable), which acts something like a
standard deviation for the data noisiness. So for an experiment with both participants and items
as random variables, the formula would look like this (following the example in Brysbaert &
Stevens, 2018, p. 6):

𝑑𝑑 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

�𝑣𝑣𝑚𝑚𝑣𝑣_𝑖𝑖𝑚𝑚𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑣𝑣𝑚𝑚𝑣𝑣_𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑚𝑚𝑣𝑣_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑣𝑣𝑚𝑚𝑣𝑣_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑚𝑚𝑣𝑣𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑝𝑝𝑟𝑟

 In the case of Freq, the difference in mean RTs is this:

Freq.RT.diff =
 mean(ddat$RT[ddat$Freq=="Low"]) - mean(ddat$RT[ddat$Freq=="High"])
Freq.RT.diff

[1] 62.01181

 You can get the variance values using the lme4 package’s VarCorr() function applied to
your model, which also gives the correlations among the random variables (an issue we noted
earlier):

VarCorr(ddat.lmer)

https://gist.github.com/jrosen48/00031865396cc855c9702e2b49a35fee

Ch. 12: Mixed-effects modeling

25

Groups Name Std.Dev. Corr
Participant (Intercept) 25.211
 SynCat1 15.470 0.997
 Freq1 13.605 -0.996 -0.988
 SynCat1:Freq1 33.107 0.056 0.127 0.030
Item (Intercept) 34.470
 Education1 29.052 -0.332
 Residual 164.761

 It’s actually easier to work with the information arranged as a data frame:

ddat.lmer.var = as.data.frame(VarCorr(ddat.lmer))
ddat.lmer.var

 grp var1 var2 vcov sdcor
1 Participant (Intercept) <NA> 635.58314 25.21077435
2 Participant SynCat1 <NA> 239.32923 15.47026929
3 Participant Freq1 <NA> 185.10932 13.60548850
4 Participant SynCat1:Freq1 <NA> 1096.0587 33.10677728
5 Participant (Intercept) SynCat1 388.92634 0.99720236
6 Participant (Intercept) Freq1 -341.69392 -0.99617797
7 Participant (Intercept) SynCat1:Freq1 46.66497 0.05590979
8 Participant SynCat1 Freq1 -207.88093 -0.98764904
9 Participant SynCat1 SynCat1:Freq1 65.15714 0.12721761

10 Participant Freq1 SynCat1:Freq1 13.38163 0.02970831
11 Item (Intercept) <NA> 1188.18928 34.47012160
12 Item Education1 <NA> 844.03162 29.05222238
13 Item (Intercept) Education1 -332.92799 -0.33245137
14 Residual <NA> <NA> 27146.25911 164.7612185

 Then you can extract the specific variances (vcov) that you need like so:

var.int.part = ddat.lmer.var[1,"vcov"] # Variance in participant intercepts
var.int.item = ddat.lmer.var[11,"vcov"] # Variance in item intercepts
var.slope.part = ddat.lmer.var[3,"vcov"] # Variance in Freq/participant slopes
var.slope.item = 0 # no variance in Freq/item slopes, since each item has a fixed Freq
var.resid = ddat.lmer.var[14,"vcov"]

 Here’s the square root of the sum of all this:

sd.total = sqrt(var.int.part + var.slope.part + var.slope.item + var.resid)
sd.total

[1] 167.2332

 And now we just divide one by the other:

Ch. 12: Mixed-effects modeling

26

cohens.d.val = Freq.RT.diff/sd.total
cohens.d.val

[1] 0.3708104

 By convention, then, Freq only shows a moderate effect (between .2 and .8), consistent
with the relatively low R2 of the model as a whole.

3.2 More complications and controversies

 As we’ve been discussing, the LME analyses above are all maximal models, that is, they
include all fixed-effect interactions and all slopes for within-unit factors and factor interactions
in the random-effect part of the model. This follows the influential advice of Barr et al. (2013),
who argue that maximal models are the best way to build on the traditions long used for
ANOVA. We’ve already seen the connections between ANOVA and LME. For example, both
models include so-called treatment-by-unit interactions (e.g., the Age × Child random slopes
for the sploink data).
 We can see the importance of including such random interactions by using a likelihood
ratio test to compare the maximum model we got for the sploink data with a model that only
includes the random intercept, symbolized by 1. That is, the simpler model assumes that each
child has his/her own default sploink value, but it doesn’t assume that each child has his/her
own personal age-related slope. Put another way, the simpler model assumes that every child
shows the same effect of Age on Sploink. We already know this isn’t true from the discussion
at the start of this chapter, so we expect that a likelihood ratio test will favor the more complex
model. Indeed, this is true:

sdat.lmer = lmer(Sploink ~ Age + (Age|Child), data = sdat) # Maximal model again
sdat.lmer.int = lmer(Sploink ~ Age + (1|Child), data = sdat) # Only random intercepts
anova(sdat.lmer.int, sdat.lmer)

 Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
sdat.lmer.int 4 160.51 166.11 -76.254 152.51
sdat.lmer 6 145.22 153.62 -66.608 133.22 19.292 2 6.468e-05 ***

 This reveals another useful property of LME: we can used likelihood ratio tests to check
which random effects we need to include in the model. Remember that in the chapter on
repeated-measures ANOVA, I noted that Raaijmakers et al. (1999) argue against running by-
item analyses (and thus against using minF') if the items in your experiment are matched in
terms of all variables except for the one you’re testing. With LME, we can actually test if we
need to include a by-items component in the analysis.

Ch. 12: Mixed-effects modeling

27

 For example, since the items in the fake Dorami experiment were supposedly matched on
all properties other than syntactic category and frequency, maybe we can get rid of the (...|Item)
part of the model. Let’s find out (again, the maximal model fails to converge):

ddat.lmer.max = lmer(RT~Education*SynCat*Freq
 +(SynCat*Freq|Participant)+(Education|Item), data = ddat) # Maximal model again
ddat.lmer.part = lmer(RT~Education*SynCat*Freq
 +(SynCat*Freq|Participant), data = ddat) # By-participants-only model

 As we saw earlier, for the full model R warns us about a failure to converge, but the
simpler model converges just fine. As with logistic regression algorithms, this means that for
the maximal model, the LME algorithm had to stop before it reached its criterion for success.
Nevertheless, the results for the simpler look quite similar to the maximal model, as you can
see by comparing Table 9 with Table 10:

summary(ddat.lmer.part) # Showing just the fixed effects

Table 10. Fixed effects for by-participant-only analysis

Fixed effects:

 Estimate Std. Error t value
(Intercept) 743.0171 10.1024 73.549
Education1 -0.2342 10.1024 -0.023
SynCat1 18.1499 9.2679 1.958
Freq1 -30.847 9.1605 -3.367
Education1:SynCat1 1.5222 9.2679 0.164
Education1:Freq1 17.6282 9.1605 1.924
SynCat1:Freq1 5.0982 11.2385 0.454
Education1:SynCat1:Freq1 -2.8677 11.2385 -0.255

 Moreover, this simpler model fits the data no worse than the maximal model, as shown
by a likelihood ratio test:

anova(ddat.lmer.part, ddat.lmer.max) # df = 3, chi-squared = 2.5727, p = 0.4623

 In this case, Raaijmakers et al. (1999) seem to be right: we may not always need a by-
items analysis in experiments with well-matched stimuli.
 However, this data set also illustrates a common problem: when trying to follow Barr et
al. (2013), the maximal model can get too complex for it to converge. How should we simplify
the model to avoid this problem?
 First note that “maximal” doesn’t mean “put every fixed variable into every unit variable”.
As Barr et al. (2013, p. 275) explain, “if any one factor involved in the interaction is between-

Ch. 12: Mixed-effects modeling

28

unit, then the random slope associated with that interaction cannot be estimated, and is not
needed.”
 Researchers sometimes simplify their LME models by testing only for random intercepts,
e.g. (1|Child) instead of (Age|Child). But Barr et al. (2013) advise against this common
practice, due to its greatly increased risk for Type I errors. After all, the random slope relates
to the fixed effect(s) that we designed the experiment to test, and it is quite common for separate
grouping units (people or linguistic forms) not only to show overall different default values
(intercepts), but also different effects (slopes).
 If the problem is that our model is too complex, then maybe we should simplify it a bit.
While some experts advise against this (e.g., see Winter, 2020, p. 266), since it changes the
conditional probabilities in the same “naughty” way that stepwise regression does, others think
that it’s worth trying; even Winter allows it as a “last resort”. More precisely, Winter advises
that you should simplify your model if the real-world situation is not as complicated as your
model implies; his only philosophical worry is with simplifying a model just to make it fit.
 But if you want to simplify just to get a fit (as published papers generally still do), Barr et
al. (2013) suggest that we should do this as minimally as possible, by first removing only the
intercept and leaving the slope. Using R’s formula notation, this is the same as “adding” a zero,
as we saw in the multiple regression chapter. So for the sploink data, this kind of model would
have (0+Age|Child).
 They suggest that it’s also OK to run a zero-random-correlation model, that is, a model
that ignores the random correlations between random intercepts and slopes. To do this, you
include an intercept (1) without the parameter and then “add” it to an intercept-less model, as
in (1|Child) + (0+Age|Child) (since the notation (Age|Child) implies the intercept × slope
interaction), or more elegantly as (Age||Child) (though unfortunately the || notation only works
for numerical variables, which we don’t have in the Dorami data set). Barr et al. base their
conclusions on numerous simulated data set where they have created the “reality” themselves,
so they know how reliable the LME models are.
 In part because of the delicacy of LME (including its tendency to crash for overly complex
models), the pro-maximal-model approach of Barr et al. (2013) has met with resistance from
other LME experts. In particular, Matuschek, et al. (2017) argue that for most normal-sized
data sets (i.e., not gigantic ones), maximal models commit the sin of overfitting: medium-
complexity models are actually better at generalizing to new data. Overfitting often has the
mathematical effect of singularity, where certain crucial model estimates are (close to) zero,
similar to the problem we saw in the previous chapter when logistic regression tries to model
a (nearly) “perfect” fit. They demonstrate the advantage of medium-complexity models with
their own simulated data, showing how a maximal model can be simplified step by step, in
order to increase statistical power without increasing the risk of Type I errors. Their arguments
are set in a larger debate over “hypothesis testing” vs. “data exploration”. Whereas Barr et al.

Ch. 12: Mixed-effects modeling

29

want everybody to do the same thing so that hypotheses are always tested in a consistent way,
Matuschek et al. argue that in real life, even a fixed factorial design requires some data
exploration as you compare models in search of the best fit. After all, the p values in an ordinary
regression (or ANOVA) are related to the ones you get from likelihood ratio tests comparing
two different models.
 Here is what they suggest (see also Bates et al., 2015, for more explicit R-oriented
instructions): you start with a maximal model, then create a zero-random-correlation model,
then continue to simplify its random-effects structure in a “systematic” way, testing each model
against the previous one using likelihood ratio tests, until no further improvement occurs, and
then add the random correlations back for the random effects that survive this procedure. The
“systematic” part of the procedure involves using principal components analysis (that data
exploration method that I mentioned in the regression chapter, but which we don’t have space
to discuss in detail in this draft of the book) to estimate how many random variables are
necessary.
 This seems like a lot of work to do by hand, so until an R package automates the process,
it’s not clear how many people are going to try it, rather than using the conceptually simpler
(if more crash-prone and overfitted) approach of Barr et al. (2013). In any case, I wouldn’t
worry about your LME model unless the coefficients or p values dramatically change when the
random effects structure changes (i.e., adding or removing random intercepts and/or slopes). If
this happens, common sense would suggest that your theoretical conclusions may be too
delicate to take seriously anyway. Statistics isn’t magic!
 So what else can we do when our model doesn’t converge? Here are a few other
suggestions, none of which is guaranteed to work in all cases.
 First, note that the probability that a LME algorithm will crash (or give unreliable results)
is increased if the predictors differ too much in their scales (i.e., their standard deviations). The
estimation algorithm for logistic regression is delicate in the same way, and even ordinary
linear regression works best if the predictors have similar scales. Fortunately, this situation is
easy to fix: just rescale the independent variables to z scores before running the regression.
 For example, Myers (2015) describes a mixed-effects regression analysis where some
predictors were raw frequencies, ranging up into the 100s, while other predictors were a
measure of syllable element collocation, ranging only from 0 to 1. The model using the raw
variables crashed, but after converting both to z scores, it ran just fine.
 Let me create a fake example, so we can discuss the problem and possible solutions:

set.seed(3) # Makes your fake data the same as mine
y = rnorm(100) # Dependent variable; a linear model is appropriate
x1 = runif(100) # ranges from 0 to 1
x2 = runif(100)*10000 # ranges from 0 to 10000
g = rep(1:10,10) # 10 grouping units with 10 observations each

Ch. 12: Mixed-effects modeling

30

 Now watch it crash (try it!):

yxgmodel.lmer1 = lmer(y~x1*x2+(x1*x2|g))

 The output of lmer() gives us lots of warnings and complaints, but also a helpful
suggestion (“Some predictor variables are on very different scales: consider rescaling”), so
let’s try it again, using z scores created using the scale() function. As noted in the earlier
regression chapters, scaling also has the nice effect of giving us (something similar to)
standardized regression coefficients in the final model (though they’re not exactly like
standardized regression coefficients unless we also standardize the dependent variable, which
we’re not doing in this particular case, though we could, since the dependent variable is
numeric):

x1.z = scale(x1); x2.z = scale(x2)

 Now the warnings are much less nasty (try it!):

yxgmodel.lmer2 = lmer(y~x1.z*x2.z+(x1.z*x2.z|g))

 The only warning we still get is this:

boundary (singular) fit: see help('isSingular')

 I mentioned singularity earlier in this chapter (search for it!): it’s not a fatal problem, but
it does suggest that our model is too complex for our data set. If we follow their advice, we’ll
see several suggestions, some of which we’ve already considered:

?isSingular

 A second method for dealing with converge and singularity problems is to use a different
fitting algorithm until we get a result with no errors. Technically, such an algorithm performs
optimization, since it tries to find a fit that’s the “best possible” in this never-perfect world
(which is where Optimality Theory gets its name). Optimization has to do with the searching
algorithm, not the form of the final statistical model itself, but the algorithm still matters, since
certain solutions are easier (or faster) to find using certain methods versus others (though faster
does not necessarily mean better).
 By default, lmer() uses an optimizer called nloptwrap, but you can try a different
optimizer with the following argument inside lmer() (putting the name of your favorite
optimizer in the “xxx” part):

Ch. 12: Mixed-effects modeling

31

control = lmerControl(optimizer = "xxx")

 But which optimizer should we try? Well, why not all of them? The key function is allFit(),
which runs in the afex package, but in order to work, you first have to install two other packages
for optimization, namely optimx (Nash & Varadhan, 2011; Nash, 2014) and dfoptim
(Varadhan et al., 2020). Of course, trying out several different fitting algorithms can be quite
slow, since your data has to get modeled several times in a row, but our fake example here is
pretty tiny so let’s try it:

install.packages(c("optimx","dfoptim")) # To avoid scrolling in the long list of packages
library(afex) # If you haven't already started it
allFit(yxgmodel.lmer2)

 Ah, buried in that long list of results and warnings, it seems that there are two algorithms
that didn’t generate singularity warnings (Nelder_Mead and nmkbw):

bobyqa : boundary (singular) fit: see help('isSingular')
[OK]
Nelder_Mead : [OK]
nlminbwrap : boundary (singular) fit: see help('isSingular')
[OK]
nmkbw : [OK]
optimx.L-BFGS-B : boundary (singular) fit: see help('isSingular')
[OK]
nloptwrap.NLOPT_LN_NELDERMEAD : boundary (singular) fit: see help('isSingular')
[OK]
nloptwrap.NLOPT_LN_BOBYQA : boundary (singular) fit: see help('isSingular')
[OK]

 Sadly, this turns out to mean merely that those algorithms didn’t converge at all. For
example, this is what happens when try Nelder_Mead:

yxgmodel.lmer3 = lmer(y~x1.z*x2.z+(x1.z*x2.z|g),
 control = lmerControl(optimizer = "Nelder_Mead"))

Warning message:
In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
 Model failed to converge with max|grad| = 0.447507 (tol = 0.002, component 1)

 The “tol” stands for tolerance, which is a tiny preset value (1e-5 = .00001) that determines
when to stop the looping algorithm: if the current and previous estimate differ by less than the
tolerance, then our fit is considered to be good enough and the looping stops. Sometimes it
helps to increase the number of loops, which you can do with this argument inside lmer(),
where “xxx” is some gigantic number (Miller, 2018, suggests 2e5 = 200000):

Ch. 12: Mixed-effects modeling

32

optCtrl=list(maxfun=xxx)

 I don’t think that’s going to help convergence with Nelder_Mead, based on how far away
from the tolerance it is with the default number of loops: 0.447507 vs. 0.002!
 Let’s try one final option suggested on the ?isSingular page, namely to use “a partially
Bayesian method”. We’ll talk about Bayesian statistics in detail in the next chapter, but the
relevant idea here is that Bayes gives us mathematical tools for modeling our prior
assumptions, before we even look at our data. This is relevant to model fit because an
optimization algorithm has to start somewhere, and the “smarter” the starting point is, the more
readily the algorithm can actually reach its goals.
 We can try out this idea using the blme package (Chung et al., 2013; “b” for “Bayes” of
course), which gives us the blmer() function:

library(blme) # Gotta install it first
yxgmodel.lmer4 = blmer(y~x1.z*x2.z+(x1.z*x2.z|g))

Warning messages:
1: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
 unable to evaluate scaled gradient
2: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
 Model failed to converge: degenerate Hessian with 3 negative eigenvalues

 Oh well. I think in this case we just have to admit that our model is too complex for our
data set, so singularity (overfitting) is pretty much unavoidable.

4. Generalized mixed-effects modeling

 There isn’t much to say about generalized linear mixed-effects modeling (GLMM) for
its own sake, since as the name suggests, it’s just an application of the linear mixed-effects
approach (like LME) to generalized linear modeling (like logistic regression). In this section
we’ll go through an example using another function in the indispensible lme4 package, discuss
some complexities (involving crashing again), and then look briefly at yet another
generalization of regression: generalized additive mixed-effects modeling (GAMM).

4.1 Reanalyzing an acceptability judgment experiment

 GLMM is for when your dependent variable is categorical (mixed-effects logistic
regression for binary data, mixed-effects Poisson regression for small count data), and the
observations are grouped by units (people or linguistic items) rather than all being independent
of each other.

Ch. 12: Mixed-effects modeling

33

 We’ll focus on mixed-effects logistic regression. Tutorials on mixed-effects logistic
regression include Baayen (2008) and Jaeger (2008). Linguistic applications include Xu et al.
(2006) (categorical perception of tones), Barr (2008) (eyetracking for picture-finding
experiments), and Moreton (2008) (artificial grammar learning).
 As a concrete example, let’s take another look at the data in demo.txt, which, as you may
remember, are the results of a real syntax experiment, where seven Mandarin speakers were
each given 20 sentences to judge as good (Judgment = 1) or bad (Judgment = 0). The sentences
came in sets of four that were matched as closely as possible, varying only two factors:
ComplexNP (1 = complex noun phrase, -1 = simple noun phrase) and Topic (1 = element
extracted from the noun phrase to topic position, -1 = no extraction). Remember that our main
interest is testing whether there is an interaction between ComplexNP and Topic, which could
mean that it’s ungrammatical to extract topics from complex noun phrases.
 As a reminder, here’s repeated-measures logistic regression. First load the data:

demdat = read.delim("demo.txt") # We're already using the name "ddat" for Dorami!

 And here’s the repeated-measures logistic regression:

int.coef = numeric(7) # Will hold intercept coefficients across participants
CNP.coef = numeric(7) # Will hold ComplexNP coefficients across participants
Top.coef = numeric(7) # Will hold Topic coefficients across participants
CxT.coef = numeric(7) # Will hold interaction coefficients across participants
for (i in 1:7) { # Run logistic regressions for each participant
 demdat.i = subset(demdat, demdat$Speaker==i) # Participant i's data
 glm.i = glm(Judgment~ComplexNP*Topic, family=binomial, data=demdat.i)
 int.coef[i] = summary(glm.i)$coefficients["(Intercept)","Estimate"]
 CNP.coef[i] = summary(glm.i)$coefficients["ComplexNP","Estimate"]
 Top.coef [i] = summary(glm.i)$coefficients["Topic","Estimate"]
 CxT.coef [i] = summary(glm.i)$coefficients["ComplexNP:Topic","Estimate"]
}
Coefficients, t, p:
t.test(int.coef); t.test(CNP.coef); t.test(Top.coef); t.test(CxT.coef)
SE:
as.numeric(mean(int.coef)/t.test(int.coef)$statistic)
as.numeric(mean(CNP.coef)/t.test(CNP.coef)$statistic)
as.numeric(mean(Top.coef)/t.test(Top.coef)$statistic)
as.numeric(mean(CxT.coef)/t.test(CxT.coef)$statistic)

 Table 11 shows the results from the above work, manually arranged in an R-like
regression table:

Ch. 12: Mixed-effects modeling

34

Table 11. Repeated-measures logistic regression analysis of demo data

 Estimate SE df t p
(Intercept) 6.07439 2.89626 6 2.0973 0.08078
ComplexNP -6.07576 1.95096 6 -3.1142 0.02074
Topic -13.3231 0.94895 6 -14.0399 8.145e-06
ComplexNP:Topic -6.07576 1.95096 6 -3.1142 0.02074

 Should we follow Raaijmakers et al. (1999) and assume that we don’t need to include a
by-items random analysis, since the sentences were well matched? Or should we follow Barr
et al. (2013) and run a maximal model? Or should we follow Matuschek et al. (2017) and start
with the maximal model and then simplify it until it converges? Or should we follow Winter
(2020) and reserve model simplification as a last resort, and instead first try rescaling and
alternative optimization algorithms? Or...?
 Welcome to real life in the era of mixed-effects modeling!
 Well, we have to do something, so let’s just follow Matuschek et al. (2017), not that I’m
saying this is necessarily the best thing to do. So we start with the maximal model, which
requires random intercepts and random slopes for both fixed variables and their interaction for
the participants (since ComplexNP, Topic, and their interaction are within Speaker), but just
random intercepts for the items, since all of our fixed variables are between items (i.e., they
describe properties of individual test sentences).
 We’ll do this analysis using the glmer() function in the lme4 package. The name should
look familiar: just as lmer() is the mixed-effects version of lm(), so glmer() is the mixed-
effects version of glm(), for generalized linear models. Its syntax should also be familiar: the
random part is like lmer() and the rest is like glm(), including here a mention of the binomial
family, since we’re doing a kind of logistic regression. By the way, be patient: this takes a little
bit of time to finish iterating through the algorithm.

demdat.glmer = glmer(Judgment~ComplexNP*Topic + (ComplexNP*Topic|Speaker)
 + (1|Item), family = binomial, data = demdat)

 In the end, the model crashes:

Warning message:
In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
 Model failed to converge with max|grad| = 0.0294537 (tol = 0.002, component 1)

 This isn’t surprising. Not only are maximal models crash-prone, but our sample size is
quite small: only 120 observations. It’s hard for the GLMM algorithm to find good evidence
for all of the random intercepts, slopes, and possible correlations in such a small sample. In

Ch. 12: Mixed-effects modeling

35

other words, the advice of Barr et al. (2013) is not practical: a maximal model is too complex
for our data set, just as Matuschek et al. (2017) would warn.
 We can simplify the random effects structure in a minimal way, namely by ignoring the
random interactions. Since our independent variables ComplexNP and Topic are numerical,
the syntax is easy: we just replace the | operator with the || operator. This creates a zero-random-
intercepts model (we could also make such a model if our independent variables were coded
as factors, but then we’d have to spell out the intercept and slope separately: (1|Speaker) + (0+
ComplexNP*Topic | Speaker)).
 Unfortunately, this slightly-less-complex model still crashes (try it yourself):

demdat.glmer.nocorr = glmer(Judgment~ComplexNP*Topic
 + (ComplexNP*Topic || Speaker) + (1|Item),
 family = binomial, data = demdat)

 If we follow the Matuschek et al. (2017) approach, our next step is to stick with the zero-
random-correlation approach, but now try to simplify the ComplexNP*Topic part of the
random structure. This formula can be unpacked as ComplexNP + Topic + ComplexNP:Topic.
Even though our theoretical interest is mainly in ComplexNP:Topic, our hypothesis only cares
about the fixed part of the model, so it’s OK to drop this interaction in the random part. That
gives us this model:

demdat.glmer.nocorr.noCxT = glmer(Judgment~ComplexNP*Topic
 + (ComplexNP+Topic || Speaker) + (1|Item),
 family = binomial, data = demdat)

 It still fails to converge:

Warning message:
In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
 Model failed to converge with max|grad| = 0.0285757 (tol = 0.002, component 1)

 So to keep this chapter from going on forever, let’s just jump down to the simplest model
that might be valid, namely one where we keep the random intercepts for the items, but for the
speakers, we only care about their random intercepts, that is, each person’s overall tendency to
say “yes” or “no” in this binary acceptability judgment task, and ignore any cross-speaker
differences in their response to the fixed variables. Since we’re not testing any random slopes,
the model naturally doesn’t include random correlations either.
 That makes our model look like the following, and finally we get one that doesn’t crash:

demdat.glmer.onlyrandint = glmer(Judgment~ComplexNP*Topic
 + (1|Speaker) + (1|Item),

Ch. 12: Mixed-effects modeling

36

 family = binomial, data = demdat)

 So now we can finally look at the results:

summary(demdat.glmer.onlyrandint)

 Let’s put its entire output into Table 12:

Table 12: By-participants-and-items random-intercepts-only model for demo data

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation)
[‘glmerMod’]
 Family: binomial (logit)
Formula: Judgment ~ ComplexNP * Topic + (1 | Speaker) + (1 | Item)
 Data: demdat

AIC BIC logLik deviance df.resid
72.9 90.5 -30.4 60.9 134

Scaled residuals:

Min 1Q Median 3Q Max
-2.69730 -0.05818 0.01109 0.05770 1.60172

Random effects:

Groups Name Variance Std.Dev.
Item (Intercept) 3.028 1.740

Speaker (Intercept) 7.336 2.708
Number of obs: 140, groups: Item, 20; Speaker, 7

Fixed effects:

 Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.8146 1.6843 1.671 0.0947 .
ComplexNP -1.7625 0.9042 -1.949 0.0513 .
Topic -4.6613 1.8238 -2.556 0.0106 *
ComplexNP:Topic -1.7624 0.9042 -1.949 0.0513 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
 (Intr) CmplNP Topic
ComplexNP -0.409

Topic -0.685 0.621

CmplxNP:Tpc -0.409 0.250 0.621

 The report first shows that glmer() uses something called the “Laplace Approximation”
to maximize likelihood; more precisely, it uses something called adaptive Gauss-Hermite

Ch. 12: Mixed-effects modeling

37

quadrature, though other options are available, like penalized quasi-likelihood. I have no idea
what these things are either, except that they’re “cheats” to give us something like maximum
likelihood when actual maximum likelihood is technically impossible to calculate in a mixed
model.
 Then it gives us some estimates of model fit, including the AIC, which we introduced in
the multiple regression chapter, as well as log likelihood, deviance, and the deviance df, which
we introduced in the logistic regression chapter (remember that deviance is -2 times the log
likelihood). And there’s that information about the residual distribution (looks reasonably
symmetrical to me). The random effects part is relatively simple, since we only modeled
random intercepts, not random slopes. The fixed effects correlations at the bottom are there too,
and not really important as usual.
 And look: glmer() gives us p values! Like glm(), the Wald test allows glmer() function
to avoid the mixed-effects df controversy by interpreting B/SE in terms of z values instead of t
values. As with ordinary logistic regression, this means larger samples are safer, and as often
noted above, our sample size is probably too small.
 Sadly, the p values bring bad news: they suggest that everything is significant, except for
the theoretically crucial thing: the interaction is only marginal. Too bad!
 But do we really need to include the by-items random intercept at all? Raaijmakers et al.
(1999) advise that by-items analyses are unnecessary if the experimental materials are well-
matched, and indeed they were in this experiment. Instead of just assuming that their logic is
valid, however, we can actually test if it is, by creating a model that drops the by-items random
component and comparing it with the above model.
 Here we go, creating the participants-only model:

demdat.glmer.onlyrandint.part = glmer(Judgment~ComplexNP*Topic + (1|Speaker),
 family = binomial, data = demdat)

 Let’s use a likelihood ratio test to see if this simpler model does as well with the data as
the more complex one. As with ordinary (logistic or linear) regression or LME, we can use the
anova() function to do this (putting the simpler model first), and as with ordinary logistic
regression, I will include test = "Chisq" to get a p value (even though glmer objects are
“smarter” than glm objects in that they know what kind of test you need here even without you
telling it):

test = "Chisq" is optional here, unlike the case for glm objecs
anova(demdat.glmer.onlyrandint.part, demdat.glmer.onlyrandint, test = "Chisq")

 Good news: The model comparison gives us a chi-squared report showing χ2(1) = 3.5214,
p = .06058 (check yourself!), so this simpler model doesn’t really do worse than the more

Ch. 12: Mixed-effects modeling

38

complex one. Just as Raaijmakers et al. (1999) argued, you might not need to include a by-
items analysis if your experimental materials are properly matched across conditions.
 Now let’s see what our simpler model says:

summary(demdat.glmer.onlyrandint.part)

 The complete summary report is shown in Table 13:

Table 13. By-participants-only random-intercepts-only model for demo data

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation)
[‘glmerMod’]
 Family: binomial (logit)
Formula: Judgment ~ ComplexNP * Topic + (1 | Speaker)
 Data: demdat

AIC BIC logLik deviance df.resid
74.4 89.1 -32.2 64.4 135

Scaled residuals:

Min 1Q Median 3Q Max
-4.6175 -0.1573 0.0460 0.1327 2.5770

Random effects:

Groups Name Variance Std.Dev.
Speaker (Intercept) 3.354 1.831

Number of obs: 140, groups: Speaker, 7

Fixed effects:

 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.9124 0.9153 2.089 0.0367 *
ComplexNP -1.2382 0.4814 -2.572 0.0101 *
Topic -3.2668 0.7257 -4.502 6.74e-06 ***
ComplexNP:Topic -1.2382 0.4814 -2.572 0.0101 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
 (Intr) CmplNP Topic
ComplexNP -0.051

Topic -0.489 0.282

CmplxNP:Tpc -0.051 -0.297 0.282

 Now we can safely and honestly conclude that our crucial interaction is truly significant.
As we’ve seen from our minF' discussions, by-participant p values tend to be lower than by-
participant-and-items p values, and the same holds for LME models.

Ch. 12: Mixed-effects modeling

39

 On the other hand, our data set is quite tiny: only 140 observations. So we might just have
a Type I error here. The small sample size is likely also an important reason why the more
complex models crashed: there weren’t enough data points to handle all of those random slopes
and their correlations with the random intercepts.

4.2 More about mixed-effects logistic regression

 If you don’t trust the Wald test to compute p values from those sample-size-ignoring z
values, you can use the mixed() function in the afex package to try out other types of p values,
as for LME. For example, let’s try the likelihood ratio test (we could also try the parametric
bootstrap, but that’s much slower).
 First we start up afex (letting it load lme4 for us, as recommended):

detach("package:lme4", unload=TRUE) # If we started running lme4 before afex
library(afex)

 Now here’s our simple model again, to double-check its p values (in an analysis of
deviance table):

demdat.mixed.onlyrandint.part.LRT = mixed(Judgment~ComplexNP*Topic
 + (1|Speaker), method="LRT", family = binomial, data = demdat)
demdat.mixed.onlyrandint.part.LRT

 Effect df Chisq p.value

1 ComplexNP 1 5.79 * 0.016
2 Topic 1 76.64 *** <.001
3 ComplexNP:Topic 1 5.79 * 0.016

 So even using a method that takes sample size into account, our crucial interaction is still
significant.
 What about overall model fit? As we saw in the glmer() reports in Tables 12 and 13,
GLMM is just like any other kind of regression in being associated with AIC (Akaike
information criterion), the related BIC (Bayesian information criterion), log likelihood, and
deviance measures: in each case, values closer to zero imply a better fit. In fact, all are
calculated in related ways. We’ve discussed all of them in the logistic regression chapter,
except for BIC, and since this thing has “Bayesian” in the name, I’ll save it for the Bayesian
chapter.
 Another way to test model fit is to use the predict() function to compare predictions with
the observed data. For LME, we used this function to make plots and compute something like
the R2 value for model fit. We can do the same thing for GLMM, but just for variety, let’s use

Ch. 12: Mixed-effects modeling

40

it to do something else (and this also works for ordinary logistic regression, LME, and
regression more generally): cross-validation (see, e.g., Baayen, 2008, and Johnson, 2008).
 In this approach, we rebuild the model on most but not all of the data, then see how well
it predicts the left-over data that we didn’t build the model on. Recall that for logistic regression,
the predict() function outputs logits by default, with positive values implying a response
towards 1 and negative values implying a response towards 0. We’ll run through 100 glmer()
models based on the participants-only model we ended up with above
(demdat.glmer.onlyrandint.part), built on only 85% of the data each time. That’s an arbitrary
size, but since our total number of observations is only 120, I wanted to give each model enough
information to make a reasonable guess, while still leaving enough left over data to test the
predictions on. Each time through the loop, we’ll calculate the proportion of the remaining
15% of the data points that it guesses correctly (e.g.., negative logit matches real response of
0), and then compute the mean of all of these 100 proportions. A perfect match would be 100%,
so let’s see how close we can get.
 Since, as you’ve already experienced, glmer() itself runs through loops, each of these 100
models itself takes some time to run, so be patient when you run the following code. It will
also throw off a lot of warnings, since several of the models don’t converge or have other
problems.

set.seed(1) # So your results match mine
N = nrow(demdat); prop.correct = numeric(100) # Proportion correct for each try
for (i in 1:100) { # Try 100 random samples (or fewer, if you're impatient)
 S.i = sample(1:N, size = round(0.85*N,0)) # Randomly sample 85% rows
 demdat.train.i = demdat[S.i,] # Just rows in the vector S.i (85%)
 demdat.test.i = demdat[setdiff(1:N,S.i),] # Rows NOT in the vector S.i (15% left over)
 demdat.i.glmer = glmer(Judgment~ComplexNP*Topic + (1|Speaker),
 family = binomial, data = demdat.train.i) # Derive model from 85%
 predict.i = predict(demdat.i.glmer, demdat.test.i, type="response") # Predict for 15%
 hits.i = sum((predict.i>0) == demdat.test.i$Judgment) # Count hits (>0 implies 1)
 prop.correct[i] = hits.i/nrow(demdat.test.i) # Proportion of hits for test set i
}
mean(prop.correct); sd(prop.correct) # Overall accuracy (and its variability)

[1] 0.6814286
[1] 0.103909

 This gives us 68% accuracy (SD 10%), which is not absolutely awful, but it’s not very
impressive either. I guess this is a small-sample problem again: either we don’t have enough
information to make good predictions, or else the large number of poorly-fit 85% samples
generated such weird coefficients that their predictions were worthless.
 To polish off our discussion of mixed-effects logistic regression, let’s take a quick final
look at VARBRUL again. Since logistic regression is at the heart of VARBRUL, and

Ch. 12: Mixed-effects modeling

41

sociolinguists often deal with grouped data (e.g., these corpus items were produced by one
speaker, while those corpus items were produced by another speaker), it seems reasonable to
adopt mixed-effects logistic regression for sociolinguistic data too. Indeed, the Rbrul package,
introduced in the logistic regression chapter, also includes mixed-effects modeling among its
bag of tricks (Johnson, 2009). Try it if you want!
 However, the sociolinguist Paolillo (2013) gives a thought-provoking argument in favor
of sticking to the traditional VARBRUL approach of treating the speakers as a fixed variable,
rather than as a random variable as in GLMM. Namely, unlike a psycholinguistic experiment,
in sociolinguistics the speakers are often not intended to represent a random sampling of a
larger population. Indeed, sociolinguists are often reluctant to assume a priori that a given set
of speakers must necessarily all represent a single population (e.g., that older, younger, male,
female speakers are all the same). Paolillo thus gives instructions on how to analyze speakers
as fixed, while still including the associated slopes and interactions properly in the model.
 One more thing: in case your curiosity remains unsatisfied and you simply must know
more technical details about GLMM, check out the frequently-asked-questions page set up by
Ben Bolker (one of the programmers behind lme4) at http://bbolker.github.io/mixedmodels-
misc/glmmFAQ.html.

4.3 Generalized additive mixed-effects modeling

 If we can generalize ordinary regression into generalized additive modeling (GAM),
where the independent variables may have any crazy shape necessary to fit the data (instead of
sticking to lines or simple curves), then what’s stopping us from generalizing this again up into
mixed-effects modeling, giving us generalized additive mixed-effects modeling (GAMM)?
Now that we have fancy high-speed computers, what’s stopping is: nothing! We can do
whatever we want!
 To give this approach its due, we’d need some rich numerical data that has a grouping
variable, plus a lot more time to play around with it. So instead of going through an example,
I’ll just suggest that to learn about GAMM you can look at some of the GAM references that I
mentioned before (Baayen et al., 2017; Tremblay & Newman, 2014). To run relatively “simple”
GAMMs, you can use the mgcv package (Wood, 2006) that we tried out last time, since it has
a function called gamm() that does for generalized additive mixed-effects modeling what its
gam() function does for ordinary generalized additive modeling. However, the gamm()
function relies on the lme() function in the nlme package, so if you want to have more than
one random variable, you instead need to use the gamm4 package (Wood & Scheipl, 2015),
which contains the function gamm4() which works its mixed-effects magic using the lmer()
and glmer() functions in the lme4 package.

http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html
http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html

Ch. 12: Mixed-effects modeling

42

6. Conclusions

 Are mixed-effects models the best thing that ever happened to statistics? It depends on
who you ask. On the one hand, they seem like a dream come true: they harness the power of
estimation-based algorithms to finally make it possible to deal with the language-as-fixed-
effects problem in the most complete way possible, something like how Fisher imagined way
back when. We can use the mixed-effects approach whether our dependent variable is
continuous or categorical, and we can test for random intercepts (differences in the default
responses of each person or test item), random slopes (differences in their own sensitivity to
the fixed variables we’re testing), and even model any interaction between these two things,
while still being able to compare models using likelihood ratio tests, plotting the results,
standardizing coefficients so we can get effect sizes, and all the other things we learned to do
with regular regression. On the other hand, the mixed-effects algorithm sure crashes a lot, and
it’s kind of annoying having to simplify the model by hand until it stops crashing, and even the
experts don’t agree on the best way to do this: they can’t even agree on how to compute the p
values, which are supposed to be a major goal of doing inferential statistics (at least the non-
Bayesian hypothesis-testing kind). Yet it seems that mixed-effects models are here to stay: they
have already taken over psycholinguistics (particularly in lexical and syntactic processing in
adults) and to a lesser extent phonetics and language acquisition, and they are also becoming
more and more popular in sociolinguistics and language teaching (with some caveats). This
makes sense, since linguists deal with a lot of grouped data, but it seems reasonable to be
cautious too. A lot of studies can still be analyzed just as well, if not better, with simple t tests,
ANOVAs, or more traditional sorts of regressions.

References

Baayen, H., Vasishth, S., Kliegl, R., & Bates, D. (2017). The cave of shadows: Addressing the

human factor with generalized additive mixed models. Journal of Memory and Language,
94, 206-234.

Baayen, R. H. (2008). Analyzing linguistic data: A practical introduction to statistics using R.
Cambridge University Press.

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed
random effects for subjects and items. Journal of Memory and Language, 59, 390-412.

Barr, D. J. (2008). Analyzing “visual world” eyetracking data using multilevel logistic
regression. Journal of Memory and Language, 59(4), 457-474.

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for
confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68
(3), 255-278.

Ch. 12: Mixed-effects modeling

43

Bartoń, K. (2022). MuMIn: Multi-Model Inference. R package.
Bates, D. (2006). lmer, p-values and all that. https://stat.ethz.ch/pipermail/r-help/2006-May/

094765.html
Bates, D., Kliegl, R., Vasishth, S., & Baayen, R. H. Parsimonious mixed models.

http://arxiv.org/abs/1506.04967.
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models

using lme4. Journal of Statistical Software, 67(1), 1-48.
Bell, B. A., Smiley, W., Ene, M., Sherlock, Jr., P. R., & Blue, G. L. (2013). An intermediate

primer to estimating linear multilevel models using SAS. Proceedings of SESUG 2013.
Available at http://analytics.ncsu.edu/sesug/2013/SD-14.pdf

Brysbaert, M. & Stevens, M. (2018). Power analysis and effect size in mixed effects models:
A tutorial. Journal of Cognition, 1(1), 1-20.

Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A., & Liu, J. (2013). A nondegenerate
penalized likelihood estimator for variance parameters in multilevel models.
Psychometrika, 78(4), 685-709.

Clark, H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in
psychological research. Journal of Verbal Learning and Verbal Behavior, 12, 335-359.

Gries, S. T. (2013). Statistics for linguistics with R: A practical introduction (2nd edition).
Berlin: De Gruyter.

Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not)
and towards logit mixed models. Journal of Memory and Language, 59 (4), 434-446.

Johnson, D. E. (2009). Getting off the GoldVarb standard: Introducing Rbrul for mixed‐effects
variable rule analysis. Language and Linguistics Compass, 3(1), 359-383. Software
available at http://www.danielezrajohnson.com/rbrul.html.

Johnson, K. (2008). Quantitative methods in linguistics. Wiley.
Johnson, P. C. (2014). Extension of Nakagawa & Schielzeth’s R2

GLMM to random slopes models.
Methods in Ecology and Evolution, 5(9), 944-946.

Judd, C. M., Westfall, J., & Kenny, D. A. (2012). Treating stimuli as a random factor in social
psychology: A new and comprehensive solution to a pervasive but largely ignored
problem. Journal of Personality and Social Psychology, 103 (1), 54-69.

Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted
maximum likelihood. Biometrics, 53, 983-997.

Kuznetsova, A., Brockhoff, P. B., Christensen, R. H. B. (2017). lmerTest package: Tests in
linear mixed effects models. Journal of Statistical Software, 82(13), 1-26.

Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. (2017). Balancing Type I error
and power in linear mixed models. Journal of Memory and Language, 94, 305-315.

Miller, S. V. (2018) Mixed effects modeling tips: Use a fast optimizer, but perform optimizer
checks. https://svmiller.com/blog/2018/06/mixed-effects-models-optimizer-checks/

Ch. 12: Mixed-effects modeling

44

Moreton, E. (2008). Analytic bias and phonological typology. Phonology, 25(1), 83-127.
Myers, J. (2015). Stuck in the middle: Mandarin medials in articulation, parsing, and

association. In Y. E. Hsiao & L.-H. Wee (Eds.) Capturing phonological shades within
and across languages (pp. 101-119). Cambridge, UK: Cambridge Scholars Publishing.

Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R² from
Generalized Linear Mixed-effects Models. Methods in Ecology and Evolution, 4 (2), 133-
142.

Nakagawa, S., Johnson, P. C. D., & Schielzeth, H. (2017). The coefficient of determination R²
and intra-class correlation coefficient from generalized linear mixed-effects models
revisited and expanded. Journal of the Royal Society Interface, 14 (134), 20170213.

Nash, J. C. (2014). On best practice optimization methods in R. Journal of Statistical Software,
60(2), 1-14.

Nash, J. C., & Varadhan, R. (2011). Unifying optimization algorithms to aid software system
users: optimx for R. Journal of Statistical Software, 43(9), 1-14.

Paolillo, J. C. (2013). Individual effects in variation analysis: Model, software, and research
design. Language Variation and Change, 25(1), 89-118.

Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-Plus. Springer.
Raaijmakers, J. G. W., Schrijnemakers, J. M. C., & Gremmen, F. (1999). How to deal with

“the language-as-fixed-effect fallacy”: Common misconceptions and alternative solutions.
Journal of Memory and Language, 41, 416-426.

Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components.
Biometrics Bulletin, 2 (6), 110-114.

Singmann, H. (2014). afex. R package.
Tremblay, A., & Newman, A. J. (2015). Modeling nonlinear relationships in ERP data using

mixed‐effects regression with R examples. Psychophysiology, 52(1), 124-139.
Varadhan, R., Borchers, H. W., Bechard, V. (2020). dfoptim: Derivative-Free Optimization. R

package.
Vasishth, S., & Broe, M. (2011). The foundations of statistics: A simulation-based approach.

Springer.
Welch, B. L. (1947). The generalization of “Student’s” problem when several different

population variances are involved. Biometrika, 34, 28-35.
Westfall, J., Kenny, D. A., & Judd, C. M. (2014). Statistical power and optimal design in

experiments in which samples of participants respond to samples of stimuli. Journal of
Experimental Psychology: General, 143(5), 2020-2045.

Wood, S. (2006). Generalized additive models: An introduction with R. CRC Press.
Wood, S., & Scheipl, F. (2015). gamm4: Generalized additive mixed models using mgcv and

lme4. R package.

