
Chapter 10
Modeling continuous variables: Multiple regression

James Myers

2022/5/14

1. Introduction

 Remember the dumb example from several chapters ago, where I pointed out that you can
predict a child’s vocabulary size from his or her height? That’s true because vocabulary size
and height are themselves both predicted by a third factor, namely age, which actually has a
causal connection with the others, not just a mere correlation. In other words, height is partially
confounded with age, and we need to separate out their effects (if any) to see how each actually
influences vocabulary size.
 If we can measure all of the potential partial confounds, we can tease apart all of their
effects using a generalization of simple regression called multiple regression, where there can
any number of independent variables, not just one. (In principle we don’t even need to be able
to measure all of the independent variables; an approach called structural equation modeling
can help detect unobserved, and possibly causal, variables; we won’t discuss it in this book,
but you can read more about it in Anderson & Gerbing, 1988, or try out R’s sem package [Fox,
2006].)
 Multiple regression doesn’t generalize only simple regression. Since the independent
variables can be either continuous values or categorical, it’s a generalization of t tests and
ANOVA as well. The way it teases apart the independent variables is directly related to the
partitioning of the variance used in ANOVA, and it is even possible to test for interactions
between continuous independent variables. Like these other methods, however, multiple
regression is still a parametric method, computing statistical significance on the basis of the
Central Limit Theorem and its assumptions about normality and the relationship between
samples and null hypothesis populations. Also like these other models, multiple regression is
also a kind of linear model, since it assumes that the relationship between each independent
variable and the dependent variable forms a straight line (aside from transformations like
lognorming or polynomial functions).
 Not only are most of the tests you’ve learned so far in this book just special cases of
multiple regression, but multiple regression is also the basis for almost all of the other tests
you’re going to learn later in this book. Remember how we only had a few, highly restricted
tests for analyzing categorical data (e.g., chi-squared tests)? Well, by generalizing multiple
regression a bit more, we get logistic regression and Poisson regression, which let you
analyze categorical data with all of the power and flexibility of linear regression. Remember

Ch. 10: Multiple regression

2

how annoying it is that when using ANOVA for a bunch of linguistic forms (e.g., words) tested
on a bunch of participants, you have to do both by-participant and by-item analyses, and then
somehow combine them together again? Well, by generalizing multiple regression to include
not just fixed variables but also random variables, we get mixed-effects modeling, which lets
us do what we want to do with those two ANOVA tests, but all in one step. We can even
combine mixed-effects modeling with logistic regression, so we can do by-participant and by-
item analyses on categorical data, like accuracy (correct vs. incorrect).
 Of course, all of this power of multiple regression comes with costs (nothing in life is
free). Because this method allows you to include any independent variable (and interactions
between variables) that you want to test, you become obligated to justify your particular choice
of variables (and interactions). Thus a good portion of this chapter will be spent discussing how
to test the goodness of fit of a model, how to compare models, and how to adjust models if they
have problems. All of these complexities make this the longest chapter in the whole book.
 But there is some good news too: the core logic of multiple regression is so simple that
even Excel can do it. Comparing models and other fancy things still require a full-fledged
statistics program like R, but if you just want to run multiple linear regression, then Excel can
do almost everything you need.

2. Multiple regression

 As usual, let’s start with some simple examples, and then explain how the math behind
them works, in particular some notions that we’ve mentioned before but haven’t discussed in
detail yet (intercept, residuals, coefficients).

2.1 Frequency and durations again

 The basic idea of multiple regression can be sketched with that dumb vocabulary size
example again. Suppose that we wondered whether it’s really true that taller kids have larger
vocabularies only because taller kids tend to be older, and not because height somehow affects
vocabulary size too. To find out which variable is actually relevant, we should use a multiple
regression model like this:

VocabularySize ~ Height + Age

 Now if we get a significant effect of Height on VocabularySize, even with the effect of
Age partialed out, then it looks like maybe height really does have a separate effect. Of course,
there might be some other (third) variable that’s confounded with Height. For example, maybe
height increases with better nutrition, which may correlate with the wealth of with the kid’s

Ch. 10: Multiple regression

3

family, which may correlate with better education, which may correlate with a larger
vocabulary. No problem, just throw in these variables as well:

VocabularySize ~ Height + Age + Nutrition + Wealth + Education

 Already you might think of a problem, however. What if these variables are too strongly
correlated with each other to partial out their effects? This wasn’t a problem for two-way or
other multi-way ANOVA, since those involved categorical variables that could be fully crossed.
For example, in the experiment with the colored rooms and the different genders, we had data
for all possible combinations of colors and genders. But in a multiple regression, the
independent variables don’t have to be categorical. What if, for example, people with higher
wealth always have better nutrition, and there are no kids (or very few kids) who are poor but
get good nutrition or who are rich but get bad nutrition? In that case, the variables of Wealth
and Nutrition will to be too confounded to tease apart; multiple regression is math, not magic.

2.1.1 Multiple regression in Excel

 Let’s play around with these ideas using a data set that we’ve already played with before.
 Fred the Phonetician hypothesized that every time a Martian produces a word, the
articulatory system gets more efficient at producing that word, causing the word to become
phonetically shorter. To test this hypothesis, he collected the data in freqdur.txt (remember
that file?), which gives the mean durations in milliseconds from a large number of Martians
pronouncing a large number of monosyllabic Martian words (all with CVC structure).
 However, Frieda and Frodo didn’t believe Fred’s hypothesis. Frieda thought that Martians
shorten words more if they are familiar, and Frodo thought they do so if the words were learned
early in life. Fred, Frieda, and Frodo decided to collaborate to see what happens if their analysis
includes not just log frequency, but also familiarity (Fam), representing how familiar (1 = least,
7 = most) each word seemed to a large number of previously tested Martians, and age of
acquisition (AoA), representing the age (1 = youngest, 7 = oldest) for first learning the word,
as claimed by a large number of previously tested Martians.
 As I mentioned in an earlier chapter, the values for frequency, familiarity and age of
acquisition are real English data), adapted from the MRC Psycholinguistic Database (Coltheart,
1981: http://websites.psychology.uwa.edu.au/school/MRCDatabase/uwa_mrc.htm). The
duration values are fake, though. How did I create them? Well, I used Excel to compute the
following equation (notice the equals sign, rather than ~, since this is literally a sum of
numbers):

Dur = 250 + (+1) ×AoA + (-1) ×Fam + (0) × LOG(Freq) + residuals

http://websites.psychology.uwa.edu.au/school/MRCDatabase/uwa_mrc.htm

Ch. 10: Multiple regression

4

 The intercept was fixed at 250; this represents a realistic “default” syllable duration (i.e.,
when all of the independent variables are zero). The residuals are random numbers (a different
one for each “word”). They should be normally distributed for real data, but I used Excel’s
=RAND() function instead, which creates uniformly distributed numbers (this choice may be
partly responsible for some of the odd results we’ll see below, since multiple regression
assumes the residuals are normal). AoA, Fam, and Freq are the corresponding values for each
“word”. The values +1, -1, and 0 are the coefficients for these three independent variables,
respectively. With these coefficients, we expect to get a significant positive effect of AoA, a
significant negative effect of Fam, and no significant effect of Freq (or LOG(Freq)).
 In other words, I faked the data so that Frieda is right (familiarity shortens duration), Frodo
got it backwards (early acquisition actually lengthens duration), and Fred is totally wrong
(frequency doesn’t correspond with duration at all). However, as we saw in that earlier chapter,
these three real variables are also significantly correlated with each other. Can multiple
regression really tease apart these partially confounded variables?
 Let’s try it in Excel first. We start with lognorming Freq as usual; to compare the results
with R, let’s use =LN() (identical to R’s log() function; remember that Excel’s =LOG()
function is identical to R’s log10() function). Let’s call that new variable LogFreq (putting it
into a new column inserted next to the other independent variables; all independent variables
have to be right next to each other). Then we start up the regression (迴歸) tool in Excel’s
Analysis ToolPak, just as we did in that earlier chapter, with Dur as the dependent variable (Y),
but this time when we select the independent (X) variables, we select all three of them (AoA,
Fam, LogFreq: make sure they are all right next to each other, and remember that when using
the Analysis ToolPak you have to use the mouse to select exactly the range of cells with the
data, not the entire columns). If you also selected the column labels, you’ll get a result that
looks something like this:

迴歸統計 ANOVA
R 的倍數 0.09659 自由度 SS MS F 顯著值
R 平方 0.00933 迴歸 3 9803.39 3267.797 5.289438 0.001247
調整的 R 平方 0.007566 殘差 1685 1040987 617.7966

標準誤 24.85551 總和 1688 1050791

觀察值個數 1689

 係數 標準誤 t 統計 P-值 下限 95% 上限 95%
截距 240.215 7.706572 31.17014 8.4E-169 225.0995 255.3304

LogFreq -1.18149 0.562998 -2.09857 0.036003 -2.28574 -0.07724

AoA 1.664269 0.719628 2.31268 0.02086 0.25281 3.075727

Fam 1.130237 1.291395 0.875207 0.381586 -1.40267 3.663144

Ch. 10: Multiple regression

5

 Following the style recommendations of the APA (American Psychology Association),
we can show the entire table, but use “B” to represent the coefficients column, as shown below
(I’ve also arbitrarily decided to round all the values to two digits past the decimal point). Using
“B” for coefficients is derived from the use of “b” for the slope in simple regression (where “a”
is the intercept), but in a multiple regression, we may have so many independent variables that
we run out of letters in the alphabet, so all of them are called “b”, just with different subscripts:
the intercept is technically b0, the first coefficient after that is b1, and so on. Even more
technically, these b coefficients should be written with little hats (like b̂), since like the y-hat
(ŷ) we saw in the correlation chapter, these coefficients are estimates, not the actual coefficients
that I used to fake the data (or that Nature would “use” if this were a real data set).

 B SE t p
Interept 240.22 7.71 31.17 < .0001

LogFreq -1.18 0.56 -2.10 .04

AoA 1.66 0.72 2.31 .02

Fam 1.13 1.29 0.88 .38

 If we want to a highlight specific result from this table, we can do so like this: “Log
frequency had a significant effect on syllable duration (B = -1.18, SE = 0.56, t(1685) = -2.10,
p = .04).” Most of these values come right from the table, but maybe you also remember that
the t value is actually B/SE = -1.18149/0.562998 = -2.09857. The p value is two-tailed (and as
usual we’ll ignore the confidence interval information), which you can confirm yourself with
=2*T.DIST(-ABS(t), df, TRUE) (i.e., cumulative=true) = 2*T.DIST(-ABS(-2.09857), 1685,
TRUE) = 0.036003346.
 But where did I get that df value from? For each parameter in a linear regression, this is
calculated like so:

df = n – k (n = number of observations, k = number of model parameters)

 Here, the parameters are not the mean and standard deviation of parametric statistics
(though linear regression is indeed an example of parametric statistics). Instead, the parameters
here are the fixed variables that define the model, including the intercept (and any interactions,
discussed later). In other words, it’s the number of rows in the regression table. So, in our
model, we have four parameters: the three independent variables (AoA , Fam, and log Freq)
plus the intercept. Excel’s first regression table shows that n (觀察值個數) is 1689, and to get
the df we subtract 4 from it, to get 1685.
 Do these results make sense, given how I faked the data? Look at the three independent
variables. Who wins, Fred, Frieda or Frodo? It should be Frieda, right? She’s the one who
thinks Fam is the crucial variable, and that’s what it says in the “true” equation that I used to

Ch. 10: Multiple regression

6

fake this data set (BFam = -1). Frodo should get it exactly backwards (BAoA = +1), and Fred
should be totally wrong (BFreq = 0).
 But that’s not what the regression analysis shows! Instead, the estimated b̂Fam = 1.13 (and
it’s not even significant: p = .38), b̂AoA = 1.66 (significant: p = .02), and b̂Freq = -1.18 (also
significant: p = .04). This implies an estimated equation like below (compare with the “true”
equation, repeated here):

Est: Dur ~ 240 + (1.66) AoA + (1.13) Fam + (-1.18) LogFreq
True: Dur ~ 250 + (+1) AoA + (-1) Fam + (0) LogFreq

 How can this be? It may partly be because of the non-normal residuals I used to fake the
data, but it’s also because those three variables are partially correlated with each other. Excel
is faithfully partialing out the variance associated with each independent variable (and the
intercept), but in the course of this procedure, it’s taking some of the variance that is “truly”
associated with one variable and moving it over to another variable, due to the correlation. That
is, it’s trying to find the most elegant solution for the data set as a whole.
 To get an intuitive feel for why the multiple regression ends up this way, look at the
correlation coefficients (r) for each pair of independent variables (which you can compute
using =CORREL()^2), as shown in Table 1.

Table 1. Pearson’s correlation coefficients for each pair of independent variables

 LogFreq Fam
AoA -.37460 -.68834
Fam .715114

 Remember that r = 1 implies a perfect positive correlation and r = -1 implies a perfect
negative correlation. Now look at the correlations of Fam with each of the other two variables.
They are almost exactly opposite: Fam is strongly positively correlated with LogFreq, but
strongly negatively correlated with AoA. So it’s not surprising that when all three variables are
added together in a single regression equation, these two correlations cancel out, and Fam ends
up having no significant effect at all. Working out exactly why the intercept and other
coefficients change how they do wouldn’t be a lot of fun, but I hope the core logic should be
somewhat clearer now.
 So, as I said, multiple regression is math, not magic. Those coefficients with the hats are
just estimates, and the p values are telling you something about how the variance was divided
up, but it’s not wise to interpret your results as being the truth. All it is our best estimate of the
truth, given the messy real-life data that we have to deal with.

Ch. 10: Multiple regression

7

 And even though this data set is fake, I faked it in a way that it’s extremely messy. Indeed,
while the residuals have a mean of zero (as residuals should), their standard deviation is a
gigantic 25 ms! This is much bigger than the change in duration generated by the “true”
equation as we vary the three independent variables, since I made those coefficients (slopes)
very tiny (0, -1, +1). For example, Fam has a “true” coefficient of -1, so we expect that changing
from the minimum Fam score of 1.28 to the maximum Fam score of 6.57 (you can confirm
these values yourself), we should see Dur decrease by only 5.29 ms. That tiny little difference
is just swamped by the huge variation in Dur created by the residuals, with a minimum of 161
ms and a maximum of 348 ms!
 Since so much of the variance in the “observed” Dur values are due to noise, our
regression model actually fits the data very badly. You can see that in Excel’s first table, which
shows a value called “R 平方”, which is just Pearson’s coefficient of determination r2,
generalized to multiple regression, so it’s symbolized with a capital letter: R2. Remember that
this value represents the proportion of variance in the dependent variable that is predicted by
the model (in this case, predicted by the entire multiple regression). But the value we’re given
is the extremely tiny .0093, which is less than 1%! Excel also gives us something called “調整

的 R 平方” (adjusted R2), which takes model complexity into account (i.e., it penalizes you
if your model has more independent variables than you need). Since our model has useless
variables in it, this adjusted R2 is even lower: .008.
 Note that this value is essentially a measure of effect size for the model as a whole, exactly
the same as eta-squared for ANOVA (which is a special case of multiple regression). It is not
a measure of the model’s statistical significance, which is instead reported in Excel’s ANOVA
table: F(3, 1685) = 5.29, MSE = 617.80, p = .001 (can you find where I got these values?). So
even though the model as a whole does better than chance at describing the “observed” data, it
actually does a pretty terrible job for real-life purposes: the model actually predicts less than
1% of the observed variance.

2.1.2 Multiple regression in R

 You can get basically the same results in R too, of course, and you already basically know
how: use the lm() function, since we’re building a linear model. Since it’s a multiple regression
model, without any interactions, we want to use the formula notation to write something like
Y ~ X1 + X2 +
 First let’s load the data in again, and the lognorm Freq (using log(), which is equivalent
to Excel’s =LN() function, which you were supposed to use in the previous subsection).

fd = read.delim("freqdur.txt")
fd$LogFreq = log(fd$Freq)

Ch. 10: Multiple regression

8

 Now let’s create and name the linear model object (fd.lm), and use summary() to display
the most important information about it (see results below).

fd.lm = lm(Dur ~ LogFreq + AoA + Fam, data = fd)
summary(fd.lm)

 The coefficients (here called “estimates”, since indeed they are merely estimated) and
associated values (SE, t, p) are the same as for Excel’s report. The R2 and adjusted R2 values
are also the same, as is the statistical results for the overall model (see the F value, two df
values, and p value?).
 R also gives us information about the shape of the residuals, shown in a table rather than
in terms of a plot: the minimum, maximum, median (right in the middle), and the first quartile
(1Q) and third quartile (3Q), which are right in the middle of the minimum and median, and
median and maximum (respectively). The median is close to zero and the two values on the
left are symmetrical with those on the right (i.e., around -90 and -16 on the left and around +16
and +90 on the right).

Call:
lm(formula = Dur ~ LogFreq + AoA + Fam, data = fd)

Residuals:

Min 1Q Median 3Q Max
-89.056 -15.864 -0.114 16.105 97.951

Coefficients:
 Estimate Std. Error t value Pr(>|t|)

(Intercept) 240.215 7.7066 31.17 <2e-16 ***
LogFreq -1.1815 0.5630 -2.099 0.0360 *
AoA 1.6643 0.7196 2.313 0.0209 *
Fam 1.1302 1.2914 0.875 0.3816

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

Residual standard error: 24.86 on 1685 degrees of freedom
Multiple R-squared: 0.00933, Adjusted R-squared: 0.007566
F-statistic: 5.289 on 3 and 1685 DF, p-value: 0.001247

 If you want to make R give you a full ANOVA table, the way Excel does, you can put the
model inside the anova() function, though R’s table actually tests each independent variable,
not the overall model as Excel does (since R instead gives the whole-model F and p values in
the default summary):

anova(fd.lm)

Ch. 10: Multiple regression

9

Analysis of Variance Table

Response: Dur
 Df Sum Sq Mean Sq F value Pr(>F)

LogFreq 1 6082 6082.2 9.845 0.001732 **
AoA 1 3248 3247.9 5.2573 0.021978 *
Fam 1 473 473.2 0.766 0.381586

Residuals 1685 1040987 617.8

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

 This ANOVA table reveals that even though ANOVA is a special case of regression, the
actual algorithms are different. In particular, the lm() function tests all independent variables
at the same time, in one step. By contrast, as we saw in the previous chapter, the ANOVA
algorithm, whether implemented in aov() or anova(), the variables are tested sequentially, first
maximizing the overall data fit just for the first variable, then looking at the residuals left over
from this first step and seeing how much of it can be explained by the second variable, and so
on. You can see for yourself that order doesn’t matter for lm() but does for anova():

fd.lm.reorder = lm(Dur ~ Fam + LogFreq + AoA, data = fd)
summary(fd.lm.reorder) # The same coefficient table as before, just in a different order
anova(fd.lm.reorder) # Now Fam is significant and LogFreq isn't!

 When would you need to use anova() on a linear model? Perhaps you have some real-
world reason to want to factor out certain variables before others, or perhaps one of your
variables is a multi-level factor, rather than a number, and you want to see what its overall
effect is, rather than the effects of specific levels within it (since, as we’ll see later in this
chapter, a multi-level factor is treated as a set of factors in multiple regression).
 Finally, just as with other R objects, you can extract just specific values, instead of
displaying the entire summary. For example, if you want to extract just the R2 value for fd.lm,
that’s in the r.squared component of the object created by summary(lm()); you can explore
its other components by typing ?summary.lm (this trick usually, but not always, works to find
out how context-dependent functions behave different with different arguments).

summary(fd.lm)$r.squared

[1] 0.009329537

Ch. 10: Multiple regression

10

2.2 More about the math behind multiple regression

 Don’t worry, this section is going to be a particularly entertaining math section, because
along the way I’m going to show you how to create a 3D cube of dots in R, and you can actually
move it around with your mouse, like a video game! Yay!
 But first, the boring part. Remember from the correlation chapter that ŷ (pronounced y-
hat) represents the best linear estimate for the data:

Simple linear regression: ŷ = a + bx

 The same logic continues to be valid if we add more independent variables and their
coefficients:

Multiple linear regression: ŷ = b0 + b1x1 + b2x2 + ... + bkxk (b0 is the y-intercept)

 Also remember that the estimated y-hat model is part of a larger model that also includes
the residuals (殘餘值), that is, the difference between the true and estimated values,
representing the random error (ε) (we use y now instead of ŷ since these are your actual values):

Simple linear regression: y = ŷ + ε = a + bx + ε
Multiple linear regression: y = ŷ + ε = b0 + b1x1 + b2x2 + ... + bkxk + ε

 Now, literally speaking, only a simple linear regression equation plots an actual one-
dimensional (1D) line. If you have two independent variables rather than one, the equation
actually describes a two-dimensional (2D) plane (平面), and if you have three independent
variables, you get a three-dimensional (3D) space, and so on. Moreover, to plot a simple
regression you need a 2D plane (xy plane), to plot a multiple regression with two independent
variables you need a 3D cube (xyz space), and so on.
 All of these plots assume that the points are defined by crossing the variables at right
angles (i.e., 90° angles): each variable is perpendicular (垂直的) to all of the others. This
trick is how multiple regression partials out the variance contributed by each independent
variable.
 You can get a hands-on feeling for this logic if we consider a multiple regression with two
independent variables, let’s say just the portion of freqdur.txt that predicts Fam from LogFreq
and AoA. This is a reasonable thing to analyze anyway, since adult judgments of familiarity
are likely to reflect some combination of lexical frequency and the age of acquisition, and it
has the added advantage of using entirely real data (from English words).

Ch. 10: Multiple regression

11

 The following equation thus describes a best-fitting plane in a 3D cloud of dots, which
minimizes the squares of the vertical distance of each point from the plane:

Fam ~ b0 + b1LogFreq + b2AoA

 To start our game, first install the rgl package (Adler et al., 2017), which links R with
something called OpenGL (open graphics library, i.e., a sharable set of computer code for
making fancy graphics):

library(rgl) # You have to install this package first

 To keep the plot nice-looking, let’s attach the freqdur.txt data frame and avoid that
cumbersome $ notation:

attach(fd)

 And now here’s our 3D plot of the scatter plot with Dur on the vertical z axis and AoA
and Fam defining the xy plane at the bottom of a 3D. Use your mouse to rotate it so you can
see it from different perspectives (Figure 1 shows a couple of them; note that both are cubes,
if your brain sees the proper square as closer to the “camera”; rotating it will make this clear).

plot3d(x= LogFreq, y=AoA, z= Fam)

Figure 1. A 3D scatter plot from two different perspectives

 Now let’s build a multiple regression model predicting Fam from LogFreq and AoA:

Ch. 10: Multiple regression

12

fd.lm2 = lm(Fam ~ LogFreq + AoA)
summary(fd.lm2) # Take a look at it yourself!

 This analysis is much more satisfying than my fake Dur data, since everything is
enormously significant (all ps < .0001). Based on the coefficients, the equation for the best-fit
plane must look like this:

Fam ~ 5.51 + 0.296LogFreq - 0.362AoA

 This describes a plane that is tilted at a slope around 0.3 along the LogFreq axis, and tilted
at a slope around -0.36 on the AoA axis. The first step to create the regression plane is to extract
these regression coefficients (instead of having to copy/paste them from the summary):

coefs = coef(fd.lm2) # Extract the regression coefficients
coefs # Take a look yourself!

 To use the planes3d() function, we have to recode the plane in terms of its four parameters
a, b, c, d, which indicate the plane equation in this weird way:

ax + by + cz + d = 0

 That is, a and b are the coefficients of the two independent variables, d is the intercept,
and z is usually -1, in order to make the equation turn into this:

z = d + ax + by

 With that background, let’s run the code (alpha is an argument controlling the degree of
shading of the plane, where 0 = clear and 1 = black, so alpha = 0.3 makes it light gray):

a = coefs["LogFreq"]
b = coefs["AoA"]
c = -1
d = coefs["(Intercept)"]
planes3d(a, b, c, d, alpha=0.3)

 Figure 2 shows one perspective of the 3D dot cloud with the regression plane, but you can
rotate it any way you like.

Ch. 10: Multiple regression

13

Figure 2. A 3D scatter plot with regression plane

 Now rotate the cube so that the plane disappears into a thin line. You can see that the dots
are roughly equally distant below and above the plane, but not perfectly, since what’s being
minimized is the vertical distances along the z-axis (i.e., the Fam axis), and the best-fit plane
is tilted (see Figure 3).

Figure 3. 3D scatter plot with regression plane level with the “camera”

 If you rotate the cube so that one square is facing you, with LogFreq at the bottom, the
LogFreq values going up from left to right, and Fam at the side, you’ll see the positive
correlation between LogFreq and Fam implied by the positive coefficient 0.30 (see left side of
Figure 4). Now rotate it so that there’s a square with AoA at the bottom (and AoA values going

Ch. 10: Multiple regression

14

up from left to right) and Fam at the side: this shows the negative correlation between AoA
and Fam implied by the negative coefficient -0.36 (see right side of Figure 4).

Figure 4. Correlations of Fam with Log Freq (left) and with AoA (right)

 Notice that the gray plane does not seem to line up perfectly with the dots from these
perspectives. This is because the plane doesn’t represent two separate simple regression lines,
but instead is attempting to find the best balance of both independent variables at the same time.
These two variables are negatively correlated, so there is no way to please them both
completely.
 You can see their negative correlation (in the dots, not the plane) if you rotate the cube
again, so that the square facing you has LogFreq and AoA on the sides (i.e., you’re looking
straight “down” or “up” into the cube), as shown in Figure 5.

Figure 5. The correlation between the two independent variables

Ch. 10: Multiple regression

15

 Now that we’re done playing, we’d better detach the fd data frame so we don’t get in
trouble later on:

detach(fd)

 Anyway, I hope that you can see now that just as a simple regression model can be
intuitively understood as the line that best fits the dots in an xy plane, by minimizing the
residuals on the axis defined by the dependent variable, so too the multiple regression model
is the plane (or cube or hypercube or...) that best fits the 3D (or 4D or 5D or...) pattern of dots,
by minimizing the residuals along the axis defined by the dependent variable.
 Regression is just algebra, and algebra is just geometry!

2.3 Residuals

 As we’ve seen, the residuals tell us something about how well our model is capturing the
real data pattern. You can compute residuals by hand by subtracting the model’s predictions
from the actual values. For example, in Excel, you can use the regression tool to find the
regression coefficients, and then use cell functions to add the intercept, the first independent
variable times its coefficient, the second independent variable times its coefficient, and so on,
for each of the observed independent variable values, and then subtracting this from the
observed value.
 As usual, it’s easier to show how to do this in R, which also happens to have functions for
generating the estimated dependent variable predicted by a model (predict()) and for extracting
the residuals from a model (resid()):

fd.lm = lm(Dur ~ LogFreq + AoA + Fam, data = fd) # In case you lost this model
Dur_hat = predict(fd.lm) # Dur values estimated by the model
fd.resid.hand = fd$Dur - Dur_hat # Manually computed residuals
fd.resid = resid(fd.lm) # Automatically computed residuals for this model
head(cbind(fd.resid.hand, fd.resid)) # They're the same!

 Since the regression “line” goes through the “middle” of the data points, the mean of the
residuals has to be zero (within the limits of computer power):

mean(fd.resid) # Yes, this is zero

[1] -1.796861e-17

 Moreover, if our factors truly describe everything we need to know about the data, the
residuals will also be normally distributed, since they’ll just be pure noise. This implies that if

Ch. 10: Multiple regression

16

the residuals are not normal, then our dependent variable shows a pattern that’s not explained
by any of the independent variables in our model, and we have more research to do.
 In this case, the residuals of this fake data set look pretty good, since they’re dominated
by pure noise:

hist(fd.resid) # Looks normal
qqnorm(fd.resid); qqline(fd.resid) # Yes, quite normal

 To see what residuals look like if we’re missing crucial data, let’s create new fake
durations, called DurX, this time adding a mysterious FactorX that has a lot more variance
than our original residuals:

fd$FactorX = 1:nrow(fd) # This data set is extra fake now!
var(fd$FactorX) # The variance is of course huge

[1] 237867.5

fd$DurX = fd$Dur + fd$FactorX

 Now we’ll build the same kind of model as before, deriving DurX from LogFreq, AoA
and Fam, since we’re pretending that we don’t know that Factor X exists:

fd.noX.lm = lm(DurX ~ LogFreq + AoA + Fam, data = fd)
coef(fd.noX.lm)

Intercept) LogFreq AoA Fam
1210.113 -14.0455 -38.6068 17.07011

 Now let’s look at the shape of the residuals for this (incomplete) model, as in Figure 6:

fd.noX.resid = resid(fd.noX.lm)
hist(fd.noX.resid) # That doesn't look normal!
qqnorm(fd.noX.resid); qqline(fd.noX.resid) # That doesn't look normal either!

Ch. 10: Multiple regression

17

Figure 6. Residuals for a poorly fit model

 Now somebody says, hey, have you considered including Factor X in your model?
Excitedly you run back to your computer and give it a try (see Figure 7):

fd.withX.lm = lm(DurX ~ LogFreq + AoA + Fam + FactorX, data = fd)
fd.withX.resid = resid(fd.withX.lm)
hist(fd.withX.resid) # Now that looks normal!
qqnorm(fd.withX.resid); qqline(fd.withX.resid) # That looks normal too!

Figure 7. Residuals for a well fit model

 Even though the math behind this is basically just algebra and arithmetic, I still think this
trick is kind of amazing. Merely by looking at what our model does not model (i.e., the

Ch. 10: Multiple regression

18

residuals), we can learn whether or not our model is capturing the most crucial information. It
doesn’t tell you what your missing “Factor X” must be, but it does tell you that there must be
something missing. Maybe it’s just one factor, maybe it’s more, or maybe it’s some sort of
transformation of your existing variables, or maybe it’s an interaction between your existing
variables.
 So residuals are not just “noise”: they can provide valuable information too.

2.4 The intercept

 The fake data set we’ve been looking at was designed to have an intercept of 250, which
represents a duration of 250 ms for words with zero frequency, zero familiarity, and zero age
of acquisition.
 Wait a minute: does that make any sense? A word with zero frequency and zero familiarity
is not actually a word at all. But if it’s a made-up non-word, how can anybody have “acquired”
it at the age of zero (i.e., at birth)? Well, as I mentioned earlier, maybe we can understand this
intercept as the “default” word length; it doesn’t matter when you learn it.
 In other situations, it makes even less sense to have a non-zero intercept. For example,
consider the real-ish data in nativism.txt (based on analyses in Myers et al., 2011). This data
set was collected to see how the accuracy in using a language is affected by what we might call
“nativist” influences (AgeAcquire, i.e., when somebody was first exposed to the language) and
by what we might call “environmental” influences (YearsUsing, i.e., how much experience
somebody had in the language). These factors are partially confounded (we’ll come back to
this), so maybe multiple regression can help tease apart these conceptually very distinct
variables.
 So we run a regression with Accuracy as the dependent measure (again, you can do most
of the following example in Excel too):

native = read.delim("nativism.txt")
native.lm = lm(Accuracy ~ AgeAcquire + YearsUsing, data=native)
summary(native.lm) # Includes coefficients table below

Coefficients:

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.689293 0.106327 6.483 1.29e-06 ***
AgeAcquire -0.009615 0.002882 -3.336 0.00287 **
YearsUsing 0.001613 0.002641 0.611 0.54740

 Based on this analysis, it looks like the nativists win: there’s a significant negative effect
of age of acquisition on accuracy (i.e., the older you start a language, the less accurate you are),

Ch. 10: Multiple regression

19

but no significant effect of experience (see Myers et al., 2011, for details on the real data and
the real study that used them).
 But look at that intercept: it’s also significant? Why? The intercept implies that a person
who was exposed to the language at birth (AgeAcquire = 0) but had no years of experience
(YearsUsing = 0) would already have an accuracy around 70% (0.69). But surely that’s
impossible: this specific language isn’t innate, so you need to do some learning!
 It would make more sense, a real-life way, if we made another assumption in the model,
namely that the intercept must be zero, so accuracy would be zero for newborn babies.
Mathematically, a model with an intercept is the same as multiplying the intercept coefficient
b0 by variable that’s always equal to one:

Model with an intercept: ŷ = b0·1+ b1·x1 + b2·x2 + ... + bk·xk
Model with no intercept: ŷ = b0·0 + b1·x1 + b2·x2 + ... + bk·xk

 So in R, if you want to remove the intercept, you “subtract” 1 in your formula (you can
also “add” 0 in the formula notation, which symbolizes the no-intercept equation above). The
results now are very different: both factors show a positive effect on accuracy (very odd for
AgeAcquire: the later you start learning, the more accurate you are??):

native.lm.noint = lm(Accuracy~AgeAcquire+YearsUsing-1,data=native)
native.lm.noint0 = lm(Accuracy~0+AgeAcquire+YearsUsing,data=native)
summary(native.lm.noint)
summary(native.lm.noint0) # Both give the same results

Coefficients:

 Estimate Std. Error t value Pr(>|t|)
AgeAcquire 0.006142 0.002549 2.409 0.024 *
YearsUsing 0.017457 0.001648 10.592 1.58e-10 ***

 Note that without the intercept, both independent variables are now significant! In fact,
YearsUsing has a much lower p value (though remember that p values are not the same as
effect size; we’ll come back to this issue shortly). Moreover, the effect of AgeAcquire is now
positive: accuracy is higher for people who acquire the language later (which seems quite
counterintuitive, even on a non-nativist account).
 Changes in statistical results due to changes in model assumptions are common when
analyzing real data, especially in regression models, where the independent variables and other
aspects of the model are not fixed ahead of time (e.g., by an experimental design), but can be
modified “freely” (e.g., adding Factor X only after you realize that his variable even exists). In
this particular case, we will soon show that the with-intercept model is statistically “better”,
but a skeptical reader of your report may still be right to argue that the no-intercept model

Ch. 10: Multiple regression

20

makes more sense in the “real world” (though the counterintuitive AgeAcquire effect in the
no-intercept model is an argument against this).
 We’ll come back to this problem of model selection shortly, but don’t expect me to tell
you what’s the 100% right thing to do in every situation. As Johnson (2008) observes, statistical
modeling is not a pure science, but partly an “art” too, subject to social conventions and human
intuitions and rhetorical argumentation, not just mathematics.
 In any case, you should treat the above mainly as mathematical practice. I don’t
recommend testing no-intercept models in real life, even if it seems more realistic. Even at the
level of rhetoric, it will make your readers suspicious that you’re trying to hide something by
distorting the data in some way. The intercept may not have great theoretical importance in
most situations, but it does tell you something about the “default” value of the dependent
variable. This information is particularly useful in non-parametric regression, like logistic
regression (see next chapter).

2.5 Standardized coefficients

 I just reminded you that a difference in p values does not tell you anything about the
relative size of two effects. We already know one way to estimate the effect size of a whole
multiple regression model (with R2), but how do we do this for individual variables? For
example, how do we compare AgeAcquire and YearsUsing in the with-intercept model of
nativism.txt?
 You might think there’s no problem here, since in this model, AgeAcquire is significant
but YearsUsing is not. But we cannot rely on the difference in the p values, because these just
reflect how “confident” we should be about the coefficients (in that weird backwards sense of
“confidence intervals” in traditional, non-Bayesian statistics). But that’s not the same as effect
size. As you know, the p values in multiple regression, actually come from one-sample t tests,
where t is calculated using the formula below for each parameter of the model:

t values in regression: 𝑡𝑡 = 𝑏𝑏
𝑆𝑆𝑆𝑆

 The p values are then computed from this, for the null hypothesis that the coefficient is
zero (no effect), with df = n - 2. As usual, the standard error (SE) is the trickiest part to compute,
but in essence it’s just a generalization of what we’ve already seen with the one-sample t test,
except that it uses matrix arithmetic since instead of a single sample (vector), we’re dealing
with a “rectangle” of numbers (i.e., the multiple vectors for the independent variables x0, x1,
x2, ..., xk, where x0 = 1 if there’s an intercept and x0 = 0 if there isn’t).

Ch. 10: Multiple regression

21

 Since the coefficients represent slopes, and slopes show how much the dependent variable
changes as a function of the independent variables, we should actually compute the effect sizes
from the coefficients, not the p values. But we can’t do this directly. For example, the
coefficient for AgeAcquire seems to be further from zero (-0.0096) than that for YearsUsing
(0.0016), but this comparison doesn’t mean anything without knowing how intrinsically
variable each of these predictors is.
 Ah! This reminds me of something.... It’s kind of like the concept of covariance, which
depends not just how correlated two variables are, but also on the variance of each of these
variables. In order to put the correlation measurement on a universal scale, we computed
Pearson’s correlation coefficient r by taking the standard deviations of these variables into
account.
 In a similar way, to put any independent variable in a multiple regression on the same
universal scale, we have to calculate its standardized regression coefficient, which can be
done simply by dividing by the standard deviation of the dependent variable and multiplying
by the standard deviation of our original coefficient, as shown below. Since this value is now
on a universal scale, we express its special status by replacing the roman letter b with the Greek
letter beta (β):

𝛽𝛽𝑖𝑖 = 𝑏𝑏𝑖𝑖 �
𝑠𝑠𝑥𝑥𝑖𝑖
𝑠𝑠𝑦𝑦
�, where βi is the standardized coefficient for independent variable xi

 Let’s do this for the original with-intercept nativism model, to compare the standardized
coefficients for AgeAcquire and YearsUsing:

AgeAcquire_b = coef(native.lm)["AgeAcquire"] # Same trick used earlier
YearsUsing_b = coef(native.lm)["YearsUsing"]
AgeAcquire_beta = AgeAcquire_b*(sd(native$AgeAcquire)/sd(native$Accuracy))
YearsUsing_beta = YearsUsing_b*(sd(native$YearsUsing)/sd(native$Accuracy))
AgeAcquire_beta; YearsUsing_beta

AgeAcquire
-0.6492881
YearsUsing
 0.1188537

 So it seems that in this model, the magnitude of the effect of AgeAcquire is over five
times greater that of YearsUsing (0.6492881/0.1188537 > 5); the difference in statistical
significance is also associated with a pretty large real-world difference.
 APA style recommends that both types of coefficients should be reported (B and β),
because the raw coefficients and the standardized coefficients give different kinds of useful

Ch. 10: Multiple regression

22

information: actual slopes in the scatter plot vs. universally comparable effect sizes. Note that
when reporting coefficients that happen to fall in the range -1 to +1, you should still include
that “0.” at the start, rather than dropping them off, because unlike p and r, coefficients aren’t
bound by -1 and +1, but can be any number between -∞ and +∞.
 There’s actually a much easier way to compute these standardized beta coefficients (it
only works for regression models that include intercepts, another reason to use them). Namely,
just convert all of your variables, both dependent and independent, into z scores ahead of time,
before creating the regression model (Aiken & West, 1991). Not only will doing this cause the
regression analysis to output standardized coefficients, but it has two other advantages that
we’ll discuss in detail later: it makes interactions easier to interpret (see later in this chapter),
and for non-parametric regression (like logistic regression), it helps the computer algorithm
find the best analysis (see next chapter).
 Let’s see how this works with our with-intercept nativism model. Just to refresh your
memory, here’s what we got when we analyzed the raw variables:

native.lm = lm(Accuracy ~ AgeAcquire + YearsUsing, data=native)
summary(native.lm) # Includes coefficients table below

Coefficients:

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.689293 0.106327 6.483 1.29e-06 ***
AgeAcquire -0.009615 0.002882 -3.336 0.00287 **
YearsUsing 0.001613 0.002641 0.611 0.54740

 To compute the standardized coefficients, we first use scale() to compute z scores for all
of our variables, and then we just run the regression analysis on the z scores:
native$Accuracy.z = scale(native$Accuracy)
native$AgeAcquire.z = scale(native$AgeAcquire)
native$YearsUsing.z = scale(native$YearsUsing)
native.lm.z = lm(Accuracy.z ~ AgeAcquire.z + YearsUsing.z, data=native)
summary(native.lm.z) # Includes coefficients table below

Coefficients:

 Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.32E-16 1.38E-01 0 1

AgeAcquire.z -6.49E-01 1.95E-01 -3.336 0.00287 **
YearsUsing.z 1.19E-01 1.95E-01 0.611 0.5474

 As you can see (despite R’s confusing use of scientific notation here), the coefficients for
the two independent variables have been changed into the standardized beta coefficients that
we calculated earlier by hand:

Ch. 10: Multiple regression

23

AgeAcquire_beta; YearsUsing_beta

AgeAcquire
-0.6492881
YearsUsing
 0.1188537

 Notice also that the t and p values for the two independent variables are exactly the same
as before, but their coefficients have changed. Their SE values have become identical, showing
that they’ve been put on the same “variability” scale so we can compare the coefficient sizes
directly. Moreover, the intercept has disappeared, turning into zero (obviously not significant),
because of course the mean (“default value”) of any set of z scores must be zero (which is why
this trick doesn’t work for no-intercept models).

2.6 Plotting multiple regressions

 We plotted simple regressions many chapters ago, but how do we do it if there are multiple
predictors? 3D graphs like we used just to clarify the math aren’t practical for real life. Also,
if we can add error bars in a bar or line plot, how do we do something similar when plotting a
regression model?
 Fortunately, R makes doing all of this relatively easy. Regarding the problem of how to
plot multiple predictors, the solution is simple: use different graphs, one per predictor. We
could do this based on the raw data, but then our plots would be somewhat misleading, since
then each plot would be based on a separate simple regression, rather than showing an aspect
of the full multiple regression.
 The simplest way to plot the effect of each predictor is to use the effects package. All we
have to do is create our regression model, and then generate all effects using the allEffects()
function, and then plotting the output of this function (we can do this in one step, but we’ll
need the effects object again shortly). This creates an effects plot, as we saw in the ANOVA
chapter, which represent the effect of each independent variable on the dependent variable,
with the effect of the other variable(s) taken into account. Here’s how it works with the native
data:

native = read.delim("nativism.txt") # Reload to start fresh
native.lm = lm(Accuracy ~ AgeAcquire + YearsUsing, data=native) # Just to be safe
library(effects) # Only need to load it once per session
native.eff = allEffects(native.lm)
plot(native.eff) # Creates Figure 8

Ch. 10: Multiple regression

24

Figure 8. Effects plot for nativism data

 What does it mean to “take the other variable(s) into account”? It means that when plotting
one of the variables (e.g., AgeAcquire), the values of the other variable (YearsUsing) are kept
constant so they have no effect. To get a sense of how this works, let’s look inside the native.eff
object, turning it into a data frame to make it easier to read.

native.eff = as.data.frame(native.eff)
native.eff

$AgeAcquire

 AgeAcquire fit se lower upper
1 0 0.731849 0.04948 0.62949 0.83421
2 10 0.635704 0.02961 0.57445 0.69696
3 30 0.443412 0.05212 0.33559 0.55124
4 40 0.347266 0.07829 0.18532 0.50921
5 60 0.154975 0.13392 -0.1221 0.43202

$YearsUsing
 YearsUsing fit se lower upper

1 2 0.553477 0.06971 0.40927 0.69768
2 20 0.58251 0.03156 0.51723 0.64779
3 30 0.598639 0.02833 0.54003 0.65725
4 40 0.614768 0.04477 0.52215 0.70739
5 60 0.647027 0.09271 0.45525 0.8388

Ch. 10: Multiple regression

25

 Looking just at the part for AgeAcquire, for example, we see that the actual values of this
variable have been replaced with the minimum and maximum and a few values in between,
and these are associated with fitted values (i.e., predicted values for Accuracy). To see what
line is being drawn by these lines, let’s do something weird: run a linear regression on this
output of a linear regression:

aa = native.eff$AgeAcquire # Just the AgeAcquire table above
lm(fit~AgeAcquire,data=aa) # fit = y values predicted for this x given the other x's

Call:
lm(formula = fit ~ AgeAcquire, data = aa)

Coefficients:
 (Intercept) AgeAcquire
 0.731849 -0.009615

 Now look at the value for the AgeAcquire coefficient: it’s exactly the same as for the
full regression model:

native.lm

Call:
lm(formula = Accuracy ~ AgeAcquire + YearsUsing, data = native)

Coefficients:
 (Intercept) AgeAcquire YearsUsing
 0.689293 -0.009615 0.001613

 But it’s not the same as what we get if AgeAcquire is the only predictor:

lm(Accuracy ~ AgeAcquire, data = native)

Call:
lm(formula = Accuracy ~ AgeAcquire, data = native)

Coefficients:
 (Intercept) AgeAcquire
 0.74938 -0.01083

 You’ve probably noticed another important thing about the effects plot: each line has a
shaded band all the way across it. This is the regression equivalent of an error bar, but since
it’s a band, it’s called an error band. In this case, the error band is a 95% confidence band

Ch. 10: Multiple regression

26

(like a 95% confidence interval). You can see where the plot gets its values from if you look at
the “lower” and “upper” columns in the native.eff tables.
 Why does this band curve, instead of being constant across the whole plot? After all, the
regression line itself is straight. The short answer is that our confidence isn’t constant across
the whole range either, but rather is sharpest in the middle, where we have more neighboring
data to help. At the extremes, the band is wider because we run out of data. Another way to
think about it is that the band is the “shadow” cast by an infinite number of possible regression
lines that fit the mean x and y values but otherwise can take a variety of possible slopes, like a
Taiwanese student playing that “bored in class” pen spinning game.
 If you don’t like how the effects package automatically plots things, you can take its
allEffects object and plot it yourself. For example, here’s how we could plot the AgeAcquire
effect in ggplot2 (chosen because it has a built-in tool for drawing error bands), using pretty
basic (i.e., ugly) defaults, giving us Figure 9:

library(ggplot2) # Only need to load it once per session
With detailed comments
ggplot(data = native.eff$AgeAcquire, # data frame generated by allEffects()
 mapping = aes(x = AgeAcquire, y = fit)) + # says what's on the x and y axes
 geom_line() + # adds the line: put stuff in here to change thickness, color, etc
 geom_ribbon(mapping = aes(ymin = lower, ymax=upper), # error band
 alpha = .2) + # degree of transparency of the band (0 = clear, 1 = totally dark)
 labs(y = "Accuracy") # Replaces "fit"
Same thing again, without comments
ggplot(data = native.eff$AgeAcquire, mapping = aes(x = AgeAcquire, y = fit)) +
 geom_line() + geom_ribbon(mapping = aes(ymin = lower, ymax=upper),
 alpha = .2) + labs(y = "Accuracy")

Figure 9. Ugly plot of the effect of AgeAquire on Acceptability with YearsUsing factored out

Ch. 10: Multiple regression

27

3. Regression is everywhere

 I know I keep saying this, but it’s really true. In this section I show how one-way
independent-measures ANOVA, two-way independent-measures ANOVA, and repeated-
measures ANOVA are all actually special cases of regression. Knowing this will not only
ground your statistical skills in (hopefully) intuitive math, but also help you to get the most
power out of both Excel and R when analyzing your data. In particular, any data that you can
analyze with ANOVA you could also analyze with regression, in a more flexible way, and
doing so might tell you a lot more than a plain old ANOVA would. There’s also a benefit to
those of you who prefer Excel to R: since Excel can run multiple regression, it is theoretically
possible (though not very practical) to run any kind of ANOVA in Excel using the regression
tool, far beyond Excel’s three built-in kinds.

3.1 ANOVA as regression

 We’ve already had lots of clues that ANOVA and regression are related. After all, Excel’s
regression tool gives you an ANOVA table, and R lets you run ANOVA by using the syntax
anova(lm(...)), i.e., doing a linear regression in an ANOVA-style (sequential) way.
 But if regression is for independent variables that are numeric, how can it analyze
independent variables that are categorical factors? We’ve actually mentioned the key ideas in
earlier chapters. First, the levels of a categorical factor actually represent numbers, like the
numerical coding we used to imitate the homoscedastic unpaired t test using simple regression
in the t test chapter (point-biserial correlation). Second, interactions are literally multiplications
of these numbers.
 Let’s start with a one-way independent-samples ANOVA (saving interactions for the next
section). Say the one factor we’re testing has three levels. We can’t code the levels as 1, 2, 3,
since then we would be falsely implying that the levels have a specific order and with specific
differences (e.g., that category 2 is exactly the same distance from category 1 and category 3).
 Instead, we split up the three-level factor into two factors, where one just indicates whether
a data point reflects some level, and the other indicates whether a data point reflects some other
level; the remaining level is then treated as the default reference level. For example, for factor
F with three levels A, B, C, where A is the reference level, we replace F with two new variables
FB = 1 only if F = B, and FC = 1 only if F = C.
 In dummy coding (or treatment coding) the alternative value is always 0. As shown in
Table 2, F=B is coded as FB=1 & FC=0, F=C is coded as FB=0 & FC=1, and the default F=A
is coded as FB=0 and FC=0. Effect coding (or sum coding) has no default reference level, but
instead recodes the levels in terms of two generic variables (called FX and FY in Table 2) that
differ in 0 and 1 values, except for one level where both variables are coded as -1. This has the

Ch. 10: Multiple regression

28

effect that each of these generic variables sum up to 0 (hence “sum coding”), so that the effects
of the independent variable are compared against a more intuitive baseline, namely zero (hence
“effect coding”).

Table 2. Two ways to turn a three-level factor into two numerical variables

Original factor Dummy coding Effect coding
F FB FC FX FY
A 0 0 1 0
B 1 0 0 1
C 0 1 -1 -1

 Both types of coding can be useful. Dummy coding allows us to compare the default
reference level with the other levels, which makes it possible (as we’ll see) to avoid post-hoc
tests. Effect coding allows us to compare each level with the grand mean of the dependent
variable, and it’s also very useful when modeling interactions (the topic of the next section).
 If you want, you can recode your factors by hand (e.g., if you’re doing this in Excel), but
R has built-in functions that preserve the factors as factor objects, while just changing their
internal numerical coding, which is useful when using functions that do special things for
factors (like the plotting functions in the effects package).
 Let’s try both methods, looking at the first colored room experiment from the first
ANOVA chapter, treating Blue as the reference level. First we have to recreate the fake data
(though this time I made sure to create Color as a factor, not just a character vector):

exp1 = data.frame(Color = as.factor(c(rep("Red",5), rep("Blue",5), rep("Yellow",5))),
 Learning=c(c(0,1,3,1,0),c(4,3,6,3,4),c(1,2,2,0,0))) # To keep track of the 3 samples

head(exp1) # See what it looks like

 Color Learning

1 Red 0
2 Red 1
3 Red 3
4 Red 1
5 Red 0
6 Blue 4

 Here are some clever R commands for creating numerical variables that implement
dummy coding and effect coding, exploiting the fact that you can convert logical variables into
numbers with 0 = FALSE and 1 = TRUE by using simple arithmetic:

Ch. 10: Multiple regression

29

exp1$ColorRed.d = 1*(exp1$Color=="Red") # "d" for "dummy coding"
exp1$ColorYellow.d = 1*(exp1$Color=="Yellow")
exp1$ColorRed.e = exp1$ColorRed.d - 1*(exp1$Color=="Blue") # "e" for "effect"
exp1$ColorYellow.e = exp1$ColorYellow.d - 1*(exp1$Color=="Blue")

head(exp1) # See what it looks like now

 Color Learning ColorRed.d ColorYellow.d ColorRed.e ColorYellow.e

1 Red 0 1 0 1 0

2 Red 1 1 0 1 0

3 Red 3 1 0 1 0

4 Red 1 1 0 1 0

5 Red 0 1 0 1 0

6 Blue 4 0 0 -1 -1

 But you don’t have to do this by hand. By default, R codes factors using dummy (treatment)
coding, with the default reference level being the level whose name appears alphabetically first
(here, “Blue”, which is alphabetically before “Red” and “Yellow”). You can see that this is
how R codes factors by using the contrasts() function:

contrasts(exp1$Color) # This function only works if Color is a factor, which it is

 Red Yellow
Blue 0 0
Red 1 0

Yellow 0 1

 What if you wanted to make Yellow the reference level instead of Blue? Then you can
use the relevel() function. Let’s create a new variable for this job:

exp1$Color.y = relevel(exp1$Color,"Yellow")
contrasts(exp1$Color.y)

 Blue Red

Yellow 0 0

Blue 1 0

Red 0 1

 Going back to the original Color factor, let’s now change its internal coding so that it uses
effect coding (which R calls sum coding), using the contr.sum() function, applied to the levels
of the factor, extracted using the levels() function, and then assign this value to the contrasts()
of the factor. (To change the factor back to dummy coding, you can use the contr.treatment()
function.)

Ch. 10: Multiple regression

30

exp1$Color.e = exp1$Color # Initiate new factor coding ("e" for "effect coding")
contrasts(exp1$Color.e) = contr.sum(levels(exp1$Color))
contrasts(exp1$Color.e) = contr.sum(3) # also works, since there are 3 levels here
contrasts(exp1$Color.e)

 [,1] [,2]
Blue 1 0

Red 0 1

Yellow -1 -1

 Notice that the column variables have no names. This is because in effect coding, none of
the levels is the default reference level; instead, the regression results will compare the effects
of each of the two new variables against the grand mean of the dependent variable.
 Now we have two statistical methods (ANOVA and regression) and for the regression,
three different codings of the factor Color (R’s default dummy coding with “Blue” as reference
level, dummy coding with “Yellow” as reference level, and effect coding). Let’s try these four
analyses one at a time to see how the results differ.
 First we repeat the ordinary ANOVA, using the aov() function:

summary(aov(Learning ~ Color, data = exp1)) # Includes the ANOVA table below

 Df Sum Sq Mean Sq F value Pr(>F)
Color 2 30 15.000 11.25 0.00177 **
Residuals 12 16 1.333

 Now let’s do a regression on the original Color factor (with R’s default dummy coding,
with Blue as reference level):

summary(lm(Learning ~ Color, data = exp1)) # Includes the regression table below

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.0000 0.5164 7.746 5.22e-06 ***
ColorRed -3.0000 0.7303 -4.108 0.00145 **
ColorYellow -3.0000 0.7303 -4.108 0.00145 **

 Notice that the Color factor has been split up into two numerical factors called ColorRed
(comparing the Red level with the reference Blue level) and ColorYellow (similarly). The
estimated coefficients should look familiar: they are the differences in the means between Blue
(M = 4) and Red (M = 1) and Yellow (M = 1):

Ch. 10: Multiple regression

31

tapply(exp1$Learning, list(exp1$Color), mean)

Blue Red Yellow
4 1 1

 The p values show us the comparisons of the Red and Yellow levels with the Blue baseline.
Thus even though this analysis doesn’t tell us if Color is significant overall, we do learn that
Blue is significantly different from Red and Yellow, and we learn this in a single model that
does not increase the risk of Type I errors (the way repeated unpaired t tests would), without
the need for any post-hoc tests.
 If you want to use regression to get an overall Color p value, you can just put our lm()
model into the anova() function instead of the summary() function:

anova(lm(Learning ~ Color, data = exp1))

Analysis of Variance Table

Response: Learning
 Df Sum Sq Mean Sq F value Pr(>F)
Color 2 30 15.0000 11.25 0.001771 **
Residuals 12 16 1.3333

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

 A quick caveat: As we saw in the previous chapter, however, ANOVA not only cares
about order, but it also cares about the sample sizes in each cell. Thus ANOVA and a regression
analysis may give different results if the sample sizes differ, or if you reorder the variables. But
my general point still stands: ANOVA is a special case of regression.
 Let’s now do a regression analysis with dummy-coded Color using Yellow as the
reference level:

summary(lm(Learning ~ Color.y, data = exp1)) # Includes the regression table below

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.00E+00 5.16E-01 1.936 0.07671 .
ColoryBlue 3.00E+00 7.30E-01 4.108 0.00145 **

ColoryRed -2.81E-16 7.30E-01 0.000 1.00000

 Now we see that the Blue level is significantly different from Yellow, but Red is not
significantly different from Yellow (remember that their means are exactly the same, so the
coefficient for ColoryRed is actually zero).

Ch. 10: Multiple regression

32

 Finally, let’s do the regression using effect coding:

summary(lm(Learning ~ Color.e, data = exp1)) # Includes the regression table below

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 2 0.2981 6.708 2.17E-05 ***

Color.e1 2 0.4216 4.743 0.000477 ***

Color.e2 -1 0.4216 -2.372 0.035292 *

 I have to admit that this result is pretty hard to understand in real-world terms, though it
still makes sense mathematically. The intercept coefficient is the overall mean (try it:
mean(c(4,1,1))), and the other two coefficients are differences compared with this overall
mean. So it seems that dummy coding makes more practical sense when testing a multi-level
factor.
 To summarize the above arguments, try testing just two colors (since t tests are a special
case of ANOVA), and look at the p values. If you do it right, the ANOVA p value and the
independent variable regression p values should all be .00283.

exp1.nored = subset(exp1, exp1$Color != "Red") # Ignore Red
summary(aov(Learning ~ Color, data = exp1.nored))
summary(lm(Learning ~ Color, data = exp1.nored))
summary(lm(Learning ~ Color.y, data = exp1.nored))
summary(lm(Learning ~ Color.e, data = exp1.nored))

 For more (much much much more) on releveling, effect coding, and related issues in
regression, see Schad et al. (2020). One thing not mentioned in this paper is that if your
regression includes multi-level factors, you can still use the emmeans() function in the
emmeans package (introduced in the ANOVA chapters) to compare them (try it!):

library(emmeans) # You only need to load this once per session
emmeans(lm(Learning ~ Color, data = exp1), list(pairwise~Color), adjust="tukey")

 A final point to end this long section: seeing the relationship between ANOVA and
regression also allows us to run something called ANCOVA: analysis of covariance (共變數

分析). An ANCOVA is most often used as a tool for factoring out extraneous (“nuisance”)
continuous variables, so the categorical factors stand out more clearly. That is, the model is
like so, where F and G are the theoretically interesting factors and H is a continuous nuisance
variable, as in the following schematic R example, or the equivalent in Excel:

lm(Dependent ~ F * G + H, ...)

Ch. 10: Multiple regression

33

 R’s function aov() can also do this, since it works even if one or more of the fixed (or
even random) variables is a numerical vector rather than a factor.

3.2 Interactions in regression

 In the ANOVA chapters I mentioned that it’s no coincidence that the interaction symbol
is × (when writing a report) and * (when running it in R). These symbols imply that
multiplication is involved somehow, and that’s literally true: if you want to test for an
interaction between variable F and G in a multiple regression analysis, all you have to do is
include F×G (or F*G) as a third variable.
 In fancier mathematical terms, if the two independent variables x1 and x2 interact, we
should find a significant role for their product x1x2, in an equation like the following:

y = b0 + b1x1 + b2x2 + b3x1x2

 Let’s explore this idea in two steps. First, we’ll see the relationship between ANOVA
interactions and multiplied variables in regression, and then we’ll discuss regression
interactions more generally, including the tricky issue of how to plot them.

3.2.1 Doing two-way independent measures ANOVA using regression

 Let’s start by redoing the second colored room experiment, the one that tested for an
interaction between gender and room color, but just use two colors to avoid the coding
complexity that arises with multi-level factors (you can try analyzing the full data set yourself,
just to see what happens).
 First we recreate the fake data:

exp2 = data.frame(Gender = c(rep("Female",15),rep("Male",15)), # F+M
 Color = rep(c(rep("Red",5), rep("Blue",5), rep("Yellow",5)),2), # RBY+RBY
 Learning=c(c(3,1,1,6,4), c(2,5,9,7,7), c(9,9,13,6,8), # F: RBY
 c(0,2,0,0,3), c(3,8,3,3,3), c(0,0,0,5,0))) # M: RBY

exp2$Gender = as.factor(exp2$Gender) # It's safest to do this job early...
exp2$Color = as.factor(exp2$Color)

head(exp2) # See what it looks like

Ch. 10: Multiple regression

34

 Gender Color Learning
1 Female Red 3
2 Female Red 1
3 Female Red 1
4 Female Red 6
5 Female Red 4
6 Female Blue 2

 Then we throw out Red to make Color a binary variable:

exp2.nored = subset(exp2, exp2$Color !="Red") # Just compare Blue vs. Yellow

 Here’s what we get when we run the two-way ANOVA:

summary(aov(Learning ~ Gender * Color, data=exp2.nored))

 Df Sum Sq Mean Sq F value Pr(>F)

Gender 1 125 125 21.28 0.000288 ***
Color 1 0 0 0 1

Gender:Color 1 45 45 7.66 0.013728 *
Residuals 16 94 5.87

 As a review, what happens when you run the following? Why is it the same as the above?

summary(aov(Learning ~ Gender + Color + Gender:Color, data=exp2.nored))

 OK, now let’s turn Color into numbers by hand, to make the multiplication in the
interaction more transparent. I’m going to use effect coding, since this is the kind we need to
use to make the interaction come out the same way as with the ANOVA (which tests effects
against the grand mean):

exp2.nored$Color.e = (exp2.nored$Color=="Yellow")*2-1 # "e" for "effect coding"
exp2.nored$Gender.e = (exp2.nored$Gender=="Male")*2-1 # Ditto
head(exp2.nored) # Take a look at the new coding

 Gender Color Learning Color.e Gender.e

6 Female Blue 2 -1 -1
7 Female Blue 5 -1 -1
8 Female Blue 9 -1 -1
9 Female Blue 7 -1 -1

10 Female Blue 7 -1 -1
11 Female Yellow 9 1 -1

Ch. 10: Multiple regression

35

 Now we’ll create a new variable that is literally the product of Color.e times Gender.e:

exp2.nored$ColorGender.e = exp2.nored$Color.e * exp2.nored$Gender.e # * = multiply
head(exp2.nored) # Take a look at the new variable

 Gender Color Learning Color.e Gender.e ColorGender.e

6 Female Blue 2 -1 -1 1
7 Female Blue 5 -1 -1 1
8 Female Blue 9 -1 -1 1
9 Female Blue 7 -1 -1 1

10 Female Blue 7 -1 -1 1
11 Female Yellow 9 1 -1 -1

 As you can see, when Color.e and Gender.e are the same (both +1 or both -1), multiplying
them gives you +1, but if they are different, you get -1. This is why you need to use effect
coding to do this trick. With dummy coding, most of the time the product would be 0 (0 * 0 =
1 * 0 = 0 * 1 = 0). With effect coding, the sign of the interaction factor says whether the two
component factors agree or not.
 Because of the experiment’s factorial design, and the equal sizes of all of the cells, all
three variables are totally uncorrelated. This is shown by the following matrix of Pearson’s
correlation coefficients (r values). This is why ANOVA can get away with partialing the factors
out sequentially, without having to worry about possible confounds between variables (and
why you should worry, a little, when running an ANOVA on data with different-sized cells):

cor(exp2.nored[,4:6]) # Columns 4, 5, 6 are Color.e, Gender.e, ColorGender.e

 Color.e Gender.e ColorGender.e
Color.e 1 0 0
Gender.e 0 1 0
ColorGender.e 0 0 1

cor(exp2.nored[-nrow(exp2.nored),4:6]) # Some correlation if there's missing data

 Color.e Gender.e ColorGender.e
Color.e 1.00000000 -0.05555556 -0.05555556
Gender.e -0.05555556 1.00000000 -0.05555556
ColorGender.e -0.05555556 -0.05555556 1.00000000

 Now let’s run this as a regression, using all three variables:

summary(lm(Learning ~ Gender.e + Color.e + ColorGender.e, data = exp2.nored))

Ch. 10: Multiple regression

36

Coefficients:
 Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.00E+00 5.42E-01 9.225 8.33E-08 ***

Gender.e -2.50E+00 5.42E-01 -4.613 0.000288 ***

Color.e -3.97E-16 5.42E-01 0.000 1.000000

ColorGender.e -1.50E+00 5.42E-01 -2.768 0.013728 *

 Maybe it’s hard to see because of R’s annoying use of scientific notation here, but the p
values for the two main effects and for the interaction are exactly the same as what we got with
the two-way ANOVA earlier (go back and check yourself!).
 Another way to show that interactions are literally multiplications is to compare the
following two analyses, where the first uses the identity I() function to force R to treat the *
symbol as ordinary multiplication and the second uses R-created effect coding for Color and
Gender. Try them all and confirm that they’re the same! (Note that this only works if you do
not rescale the variables using z scores to get standardized beta coefficients: ANOVA isn’t
equivalent to that!)

Literal multiplication
summary(lm(Learning ~ Gender.e + Color.e + I(Gender.e * Color.e), data = exp2.nored))

Formula syntax on effect-coded factors
exp2.nored$Color.er = exp2.nored$Color
contrasts(exp2.nored$Color.er) = contr.sum(levels(exp2.nored$Color.er))
exp2.nored$Gender.er = exp2.nored$Gender
contrasts(exp2.nored$Gender.er) = contr.sum(levels(exp2.nored$Gender.er))
summary(lm(Learning ~ Gender.e * Color.e, data = exp2.nored))

 By the way, if you hand-code the effect coding, you can do most of the above in Excel
too. So if you want to run a three-way independent-measures ANOVA, but, for some reason,
insist on using Excel, you can do it! Instead of using Excel’s three built-in ANOVA tools, just
use its built-in regression tool.

3.2.2 Regression interactions more generally

 Now that we know that we can test interactions in regressions, let’s go beyond categorical
independent variables and see what happens!
 Continuous variables are often a lot more realistic than categorical variables. For example,
it seems reasonable to hypothesize that processing speeds will be affected both by word
frequency (more common = faster) and by word length (longer = slower). We could force both
of these naturally continuous variables into binary factors by splitting each continuum in half:
word frequency below the median = -1, above the median = +1, and likewise for word length.

Ch. 10: Multiple regression

37

But not only would this would throw out a lot of information, but it would also miss the fact
that in real lexicons the two factors are correlated: common words tend to be shorter. So it may
be better to run a multiple regression analysis. But what happens if we also include an
interaction to see if the continuous factors influence each other?
 Even without testing interactions, the partial correlations between variables in a multiple
regression can influence each other in surprising ways that only make sense if you study the
data carefully. We already suffered from this problem with the freqdur.txt case, but here’s a
more abstract example that may help give you clearer intuitions for how this can happen
(simplified from Crawley, 2007, pp. 314ff, and Gries, 2013, pp. 5-6).
 First we create some fake data with three variables:

x1=c(1,2,3,4,5,6,7,8,9); x2=c(0,0,0,4,4,4,7,7,7); y=c(3,2,1,6,5,4,9,8,7)
 It looks like there’s a positive correlation between x1 and y:

plot(x1,y) # Try it yourself!
summary(lm(y~x1)) # Indeed, the coefficient for x1 is positive

 But when we add x2, the x1 coefficient turns negative!

summary(lm(y~x1+x2)) # Try it yourself!

 That’s partly because there’s actually an interaction between x1 and x2:

summary(lm(y~x1*x2)) # Try it yourself!

 We can get a sense of this interaction with a plot:

lines(predict(lm(y~x1*x2))) # Three falling trend lines for the (x1,y) correlation

 Moreover, x1 and x2 are highly correlated with each other:

cor.test(x1,x2) # r(7) = .95, p < .0001

 Another way to see why x1 has a negative effect on y in the full model is to play with the
associated 3D scatter plot. Rotate the cube as we did before to see the correlations associated
with y ~ x1, y ~ x2, and x1 ~ x2:

library(rgl)

Ch. 10: Multiple regression

38

plot3d(x=x1,y=x2,z=y)
coefs = coef(lm(y~x1*x2))
a = coefs["x1"]; b = coefs["x2"]; c = -1; d = coefs["(Intercept)"]
planes3d(a, b, c, d, alpha=0.5)

 As the full model and plots show, the correlation between y and x1 is truly negative; the
rising aspect of the original 2D scatter plot is actually caused by the positive correlation
between y and x2. This switch from positive to negative sign for x1 can only happen because
x1 and x2 are correlated, which is impossible in a factorial experiment, but is not uncommon
when working with numerical variables in a multiple regression.
 As this example also shows, however, that if there is truly an interaction implicit in your
data, you should try to find it, despite the confusions it may cause. Indeed, just as with ANOVA,
sometimes the interaction is the theoretically most important part of your analysis.
 For example, the data in NBUP.txt (collected and analyzed for Myers, 2015) show mean
acceptability judgment responses for thousands of fake Mandarin syllables, along with
information on lexical typicality (NB = number of lexical neighbors differing in only one
phoneme from the test item) and universality (UP = number of languages containing the test
item’s onset consonant in the cross-linguistic UPSID database; Maddieson, 1984). One of the
research questions concerned a potential interaction: does the universality (UP) of a pattern
affect how people treat the language-specific properties (NB) of that pattern?
 These two factors are not correlated, and if we ignore the interaction, both have a positive
effect on acceptability, as one might expect. When we include the interaction, we find that it is
significant and the model fits better (larger R2), but now the effect of UP becomes negative and
non-significant (try it!):

syl = read.delim("NBUP.txt")
cor.test(sylNB,sylUP) # r(3185) = -.03, p = .09
syl.noint = lm(MeanResp ~ NB + UP, data=syl) # Don't test interaction: Adj R2 = .293
summary(syl.noint) # Both have significant positive effects
syl.int = lm(MeanResp ~ NB * UP, data=syl) # Include interaction: Adj R2 = .303
summary(syl.int) # UP loses its significant effect

 To understand the interaction, as usual it’s best to make a plot. Since both variables are
continuous, one way to do this is to make a series of 2D scatter plots, each showing the effect
of one variable when the other variable is in a certain range, in a so-called trellis (網格) display.
Here are four ways to do it. All of them show that the effect of NB on MeanResp gets greater
(steeper slope) as UP gets gradually higher, thus revealing the interaction.

Method 1: Using R's base package (Figure 10)
par(mfrow=c(2,3)) # We'll make two rows and three columns of plots
syl = syl[order(syl$UP),] # Sort data frame by UP (smallest to largest)
n = ceiling(nrow(syl)/6) # Number of items per each of the six subsets

Ch. 10: Multiple regression

39

minx = min(syl$NB) # NB will be the x-axis in each plot
maxx = max(syl$NB) # We need overall min/max so the plots will correspond
miny = min(syl$MeanResp) # Acceptability will be the y-axis in each plot
maxy = max(syl$MeanResp) # Acceptability will be the y-axis in each plot
for (i in 1:6) { # Use a loop to avoid having retype everything four times
 minUP = syl$UP[n*(i-1)+1] # E.g. if i=2 & n=3, 1st item in 2nd subset = 3*(2-1)+1 = 4
 maxUP = syl$UP[min(n*i,nrow(syl))] # E.g. if n=3 & nrow=4, last item is dropped
 syl.i = subset(syl,(syl$UP >= minUP & syl$UP <= maxUP)) # Overlap one item
 plot(syl.i$NB, syl.i $MeanResp, xlab="NB", ylab="MeanResp",
 main=paste("UP: from",minUP,"to",maxUP))
 abline(lm(syl.i$MeanResp~syl.i$NB)) # Plot the linear best-fit line for each subset
}

Figure 10. Plotting UP × NB interaction using basic R

Method 2: Using the lattice package (Figure 11)
library(lattice) # It has to be installed first, if it isn't already
UP.eq = equal.count(syl$UP) # Like minUP & maxUP in Method 1
xyplot(syl$MeanResp ~ syl$NB | UP.eq, # The "|" tells how to divide up the plots
 panel = function(x, y) { # Each subplot is called a "panel"
 panel.xyplot(x, y) # Plot the dots in each panel
 panel.abline(lm(y~x)) # Plot the linear best-fit line for each panel
 } # End of panel function
) # End of xplot function

Ch. 10: Multiple regression

40

Figure 11. Plotting UP × NB interaction using lattice package

Method 3: Trellis-style plot using the ggplot2 package (Figure 12)
library(ggplot2) # Only need to load once
syl$UPsubsets = cut(syl$UP, 7) # Cut UP into non-overlapping subsets
ggplot(data=syl, aes(NB, MeanResp)) + # Predict MeanResp from NB
 geom_point() + # Draw data as dots
 geom_smooth(method=lm, se=FALSE) + # Add linear regression line for each plot
 facet_wrap(~UPsubsets) # Cycle through each of the subsets (why not 7? no idea)

Figure 12. Plotting UP × NB interaction using a trellis style in the ggplot2 package

Method 4: Using the effects package (Figure 13)
library(effects) # Only need to load once

Ch. 10: Multiple regression

41

plot(allEffects(syl.int))

Figure 13. Plotting UP × NB interaction using the effects package

 However, we might instead want to plot the interaction in a single simple graph, with NB
on the x axis but different subranges of UP represented by different lines with different colors
(or width or solid/dashed/dotted differences). This is relatively easy to do by combining the
powers of the effects and ggplot2 packages:

Method 5: All-in-one plot using the effects and ggplot2 packages (Figure 14)
library(effects) # Only need to load once
library(ggplot2) # Only need to load once
syl.nbup.eff = as.data.frame(effect("NB:UP",syl.int)) # Select just this interaction
Here's what it looks like:
syl.nbup.eff # It's crossing NB and UP, see?

 NB UP fit se lower upper
1 0 1 0.155365 0.004627059 0.1462927 0.1644373
2 10 1 0.2535685 0.003028136 0.2476312 0.2595058
3 20 1 0.351772 0.005851872 0.3402982 0.3632459
4 30 1 0.4499756 0.009830263 0.4307013 0.4692498
5 40 1 0.5481791 0.014012087 0.5207054 0.5756527
6 0 100 0.1529699 0.00348331 0.1461401 0.1597996
7 10 100 0.2682895 0.002296058 0.2637876 0.2727914

Now we use ggplot2 to plot it
We will put NB on the x axis and use UP to color the lines
But that means we first need to convert UP to a factor

Ch. 10: Multiple regression

42

syl.nbup.eff$UP = as.factor(syl.nbup.eff$UP)

The scale commands automatically pick a standard color scheme for a sequence;
there are lots and lots of other options, including using your own hand-picked colors:
scale_color_manual(values=...) # Color of border of geoms (lines here)
scale_fill_manual(values=...) # Color inside the geoms (lines here)
guides(color = guide_legend(override.aes = list(fill = ...)))

ggplot(data = syl.nbup.eff, mapping = aes(x = NB, y = fit, color = UP, fill = UP)) +
 geom_line() + geom_ribbon(mapping = aes(ymin = lower, ymax = upper), alpha = .2) +
 scale_color_brewer(type = "seq", palette = "Reds") +
 scale_fill_brewer(type = "seq", palette = "Reds") +
 labs(y = "MeanResp")

Figure 14. Plotting UP × NB interaction in one graph using the effects and ggplot2 packages

 Yet another way to show the interaction would be to use the x-axis and y-axis of the plot
to represent the two independent variables, and representing the dependent variable in terms of
color or shading, in a so-called heat map. R has a base heatmap() function, which converts a
matrix of values into different shades (darker = higher values), but it’s awkward to create the
matrix of mean dependent variables and then get things to plot properly (similarly for the bplot()
function in the rms package; Harrell, 2017). However, heat maps in ggplot2 are quite easy.
Continuing to use the effects-based data frame that we created for the previous plot, we just
use the geom_tile() function like so, yielding a plot where lighter squares represent higher

Ch. 10: Multiple regression

43

values of the dependent variable. You can see the interaction from how the shading is similar
all the way down in the leftmost column but varies in the rightmost column.

Method 6: Heatmap using the effects and ggplot2 packages (Figure 15)
ggplot(data = syl.nbup.eff, mapping = aes(x = NB, y = UP, fill = fit)) +
 geom_tile() +
 labs(fill = "MeanResp") # Replaces "fit"

Figure 15. Plotting UP × NB interaction as a heat map using the effects and ggplot2 packages

 So which is your favorite? Mine’s the one with all the lines in the same graph (Figure 14),
since that seems to show the interaction the most clearly, and also shows the 95% confidence
intervals for each individual line.
 Before ending this section, I have to say one more thing about regression interactions.
Earlier I mentioned that interpreting them is simplified if we first convert the variables to z
scores (again, this is also useful for computing the standardized coefficients). Some statistics
programs do this incorrectly, by multiplying the variables before computing the z scores (i.e.,
incorrectly using z(xy), instead of the correct z(x)z(y): wrong scope!). But R lets us write our
own code to standardize the variables first, with R’s formula syntax taking care of the
multiplication (you can also do this easily using Excel cell functions to create your scaled
variables, and then applying Excel’s multiple regression tool to them).
 Let’s try this on the NBUP.txt data in syl. First, here are the results with the raw variables:

syl.int = lm(MeanResp ~ NB * UP, data=syl)
summary(syl.int) # Same as what we did above

Ch. 10: Multiple regression

44

Coefficients:
 Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.55E-01 4.65E-03 33.456 < 2e-16 ***
NB 9.80E-03 4.34E-04 22.609 < 2e-16 ***
UP -2.42E-05 2.62E-05 -0.922 0.356

NB:UP 1.73E-05 2.51E-06 6.888 6.79E-12 ***

 Now, here’s the analysis using z scores:

syl$MeanResp.z = scale(syl$MeanResp)
syl$NB.z = scale(syl$NB)
syl$UP.z = scale(syl$UP)
syl.int.z = lm(MeanResp.z ~ NB.z * UP.z, data=syl)
summary(syl.int.z)

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.003045 0.014793 0.206 0.837

NB.z 0.536597 0.014797 36.265 < 2e-16 ***

UP.z 0.102062 0.014801 6.896 6.44E-12 ***

NB.z:UP.z 0.102281 0.014849 6.888 6.79E-12 ***

 Notice that the t and p values for the interaction remain the same, showing that we’ve
calculated the standardized values correctly. The intercept doesn’t become zero, though, due
to our use of z(x)z(y) instead of z(xy). Crucially, however, the significant positive effect of UP
from the non-interaction model has returned. Not only does this match our expectations
(universally more common patterns should be more acceptable for speakers of any language),
but it also matches the plots above, where the regression lines not only change slope in each
subplot, but change in overall height as well, with a overall higher line for higher values of UP.
Thus it seems that converting to z scores has disentangled any confusion caused by testing the
interaction between two continuous variables.
 As a side benefit, the final regression table also gives us standardized coefficients,
allowing us to compare the relative effect size of NB (β = 0.54) and UP (β = 0.10): it seems
that even though universals do affect acceptability, lexicon-specific neighbors still have a
stronger effect.

3.3 Repeated-measures regression

 All of this is lovely, of course, but if ANOVA is truly just a special case of regression,
then how can regression handle repeated-measures data, as you get from a within-group
experimental design? With something called repeated-measures regression, of course.

Ch. 10: Multiple regression

45

 Lorch and Myers (1990) (no relation!) give detailed instructions on how to do a repeated-
measures regression (see Myers et al., 2006, for a linguistic application). In the first step, you
run separate regressions on each unit (e.g., each participant in an experiment). This gives you
coefficients for each of the factors (and their interactions, if you included these in the model).
These cross-unit sets of coefficients are random variables that fall into t distributions. This
means that in the second step, you can test their significance by running one-sample t tests on
each coefficient set. This algorithm thus first partials out the variance due to the fixed variables,
and then partials out the variance due to the random variable, just like repeated-measures
ANOVA does.
 For example, suppose you run five people in an experiment where they respond to a bunch
of words that are either nouns or verbs, and the words all vary in lexical frequency. You know
that frequency is naturally a continuous variable, so you don’t want to divide the words into
high vs. low categories. But you still want to look for main effects of syntactic category,
frequency, and any interaction.
 First you compute separate regressions for each participant i:

RT(participant i, item j) = bintercepti + bnouniNoun + bfreqiLogfreq + bnoun×freqiFreq + Error(i,j)

 This gives you a matrix of coefficients, as on the left side of Table 3. To finish the analysis,
you just run one-sample two-tailed t tests on each set of five coefficients (as you can confirm
yourself, SE = s/√n, t = Mcoef/SE, and df = n-1, where n = 5 and μ = 0).

Table 3. An example of repeated-measures regression

 Subj1 Subj2 Subj3 Subj4 Subj5 Mcoef SE t p
bintercept -0.413 -0.280 -0.476 0.490 0.410 -0.054 0.208 -0.258 .809
bnoun 1.477 1.356 1.074 1.011 0.985 1.181 0.099 11.895 < .001
bfreq 1.760 2.367 2.288 1.676 2.239 2.066 0.144 14.333 < .001
bnoun×freq 0.003 -0.001 0.062 -0.007 0.001 0.012 0.013 0.913 .413

 Of course, it’s a lot easier if you automate this procedure, in either Excel or R. For example,
using R you could run regressions for each participant using lm(), extract the coefficients using
summary(lm...)$coefficients, then use t.test() to do the one-sample t tests. This would give
you the following function:

Ch. 10: Multiple regression

46

lorch.myers.simple = function(data) { # Simple regression Y~X for Subj = 1, 2, ...
 n = length(unique(data$Subj)) # Number of subjects (participants)
 b0 = NULL # For the by-subject intercepts
 b1 = NULL # For the by-subject coefficients for X
 for (i in 1:n) {
 lm.i = lm(Y~X,data=subset(data,data$Subj==i))
 b0 = c(b0,summary(lm.i)$coefficients[1,1]) # Put in subj i's intercept coefficient
 b1 = c(b1,summary(lm.i)$coefficients[2,1]) # Put in subj i's coefficient for X
 }
 return(list(t.test(b0),t.test(b1))) # Output a list of the one-sample t tests
}

 Let’s try it out on the repeated-measures data in lorchmyers.txt, which has the dependent
variable Y, a grouping variable called “Subj” and only one independent variable X. But X is a
numerical variable, so neither a paired t test nor repeated-measures ANOVA make sense here.

lmd = read.delim("lorchmyersdat.txt")
head(lmd) # Take a look!

 Subj Y X
1 1 1 1
2 1 2 1
3 1 3 2
4 1 4 2
5 2 1 1
6 2 2 1

 Now we can do a repeated-measures regression on this data set. This simple function
assumes the grouping variable is always called “Subj”, and reports the statistical results for the
intercept as [[1]] and the sole independent variable as [[2]], as shown below.

lorch.myers.simple(lmd)

[[1]]

 One Sample t-test

data: b0
t = 1.2247, df = 3, p-value = 0.3081
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.7992283 1.7992283
sample estimates:
mean of x
 0.5

Ch. 10: Multiple regression

47

[[2]]

 One Sample t-test

data: b1
t = 3.2863, df = 3, p-value = 0.04621
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 0.04741864 2.95258136
sample estimates:
mean of x
 1.5

 But wait a minute. Surely, R is so powerful that it can do this for us automatically! I
wonder what would happen if I tried to run a repeated-measures ANOVA on this data set
anyway, using exactly the correct syntax that we learned in the ANOVA chapters, so I include
an Error() term that refers to the grouping variable Subj as a factor, and I put this over the
independent variable X. It doesn’t hurt to try, right? Hmm....

summary(aov(Y ~ X + Error(as.factor(Subj)/X), data = lmd))

 Well, it didn’t blow up the computer. Let’s look at these results....

Error: as.factor(Subj)
 Df Sum Sq Mean Sq F value Pr(>F)
Residuals 3 12.5 4.167

Error: as.factor(Subj):X
 Df Sum Sq Mean Sq F value Pr(>F)
X 1 9 9 10.8 0.0462 *
Residuals 3 2.5 0.833

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

Error: Within
 Df Sum Sq Mean Sq F value Pr(>F)
Residuals 8 5 0.625

 Hey! It actually worked! There’s the exact same p value that we got from
lorch.myers.simple() for X, based on an F value that’s the square of our function’s t value
(3.28632 = 10.79977). So I guess you can use the aov() function to run something like a
repeated-measures regression (more accurately, repeated-measures ANCOVA). Don’t forget
this trick: we’ll discuss it again when we get to mixed-effects modeling in a later chapter.

Ch. 10: Multiple regression

48

4. Model fit

 If a statistical model is supposed to be a “model” in the ordinary sense of the word, then
it’s not enough to test statistically significance, or even to examine effect sizes (as with the
standardized β coefficients). We also want to know how well the model fits (matches) the real
data. We’ve already seen one way to measure this: look at the overall coefficient of
determination, or R2, which represents the proportion of variance in the data that’s captured by
the model (roughly speaking, how close the regression “line” is to the dots in the scatter plot).
 In this section will explore this idea in a bit more depth, first discussing how to measure
the fit of your model, and then discussing how to improve the fit of your model.

4.1 Testing model fit

 We’ll start by quantifying how well your model fits the data, and then we’ll look at how
to compare the fit of two models of the same data.

4.1.1 Quantifying model fit

 As we’ve seen, a multiple regression gives us p values for each of the parameters
(including the intercept), but also a p value for the model as a whole. For example, let’s go
back to our original regression model for the freqdur.txt data:

fd = read.delim("freqdur.txt") # Make it again if you lost it
fd$LogFreq = log(fd$Freq)
fd.lm = lm(Dur ~ LogFreq + AoA + Fam, data = fd)
summary(fd.lm)

 At the bottom of the summary, we see this:

Residual standard error: 24.86 on 1685 degrees of freedom
Multiple R-squared: 0.00933, Adjusted R-squared: 0.007566
F-statistic: 5.289 on 3 and 1685 DF, p-value: 0.001247

 As we noted earlier, the R2 is a generalization of Pearson’s coefficient of determination r2
for multiple independent variables. Computing its significance involves a ratio, namely the
ratio of “explained variance” (described by the model) to “unexplained variance” (of the
residuals). Since it’s a ratio of variances, the F distribution gets involved.
 More precisely, R is computing the F value using the following steps. Note that halfway
through R computes something it calls the residual sum of squares (RSS), but which APA
calls the sum of squares for error (SSE).

Ch. 10: Multiple regression

49

yhat = predict(fd.lm) # the model's estimated y-hat values
n = nrow(fd) # number of observations
SSM = sum((yhat-mean(fd$Dur))^2) # sum of squares of the model
k = 4 # Number of parameters in the model: intercept, LogFreq, AoA, Fam
dfM = k - 1 # df for model
MSM = SSM/dfM # mean squares of the model = explained variance
RSS = sum(resid(fd.lm)^2) # residual sum of squares (also known as SSE)
dfE = n - k # df for error
MSE = RSS/dfE # mean squares of the model = unexplained variance
Fval = MSM/MSE # ratio of explained to unexplained
pval = pf(Fval, df1=dfM, df2=dfE, lower.tail=F) # Area to the right of F value

 At the end of all these steps, you get values that I call Fval and pval, as below. They are
exactly the same as the values provided in R’s summary.lm() report above:

Fval; pval

[1] 5.289438
[1] 0.001246966

 As for R2 itself, this is even easier to calculate: it’s just the ratio of the variance predicted
for Dur by the model (ŷ) divided by the actual Dur variance (again, this matches the
summary.lm report above). Boy, what a terrible fit!

var(yhat)/var(fd$Dur)

[1] 0.009329537

 There’s a problem with using R2 as a measure of model fit, however, a problem that turns
out to be difficult to solve. The problem is called overfitting. At first this may sound confusing:
if we want our model to fit the real data, then the better the fit is, the happier we should be. But
just as eating is wonderful while overeating is bad, it is indeed possible to fit your data “too
well”. We actually mentioned this problem way back in the correlation chapter. After all, if
you have 100 data points, the best-fitting model would just be one that simply lists all 100 data
points, but clearly that would be very unsatisfying. We don’t want our model to be an exact
copy of the world, but an explanation of the world, that is, a kind of elegant, insightful
description that allows us to see what’s important and what’s not.
 In the case of R2, imagine two models of the same data set of 20 data points, both with R2
=.9 (a very good fit), but one model has 15 independent variables while the other only has 3.
Obviously the second model is much better; the first one has almost as many parameters as the
number of data points! Thus the adjusted R2 value that R and Excel give you “punishes” you
for complicating your model unnecessarily. In the case of fd.lm, the adjusted R2 (.007566) is

Ch. 10: Multiple regression

50

only slightly lower than the ordinary R2 (.00933), because our model is already rather simple
(despite the terrible fit indicated by the tiny R2 values).
 As we’ll see in later chapters, R2 really only makes sense for linear regression, so
statisticians developed a more general measure abbreviated as AIC. This stands for the Akaike
Information Criterion (see, e.g., Maindonald & Braun, 2003), invented by the Japanese
statistician Hirotugu Akaike (1927-2009). The “information” part of the name relates to the
idea that a good model should be able to describe your data in an efficient way. Maybe you
remember from the probability chapter that randomness can be defined in terms of something
called Kolmogorov complexity, where a set is considered random if it is impossible to
summarize in an efficient way. The AIC quantifies a similar concept, so that higher values
indicate that more of the data variance is random, so your model fits badly.
 The formula for AIC is surprisingly simple, as shown below. Here, ln = natural log (i.e.,
log base e, i.e., R’s log()), k = number of model parameters (i.e., independent variables plus
their interactions), and L = likelihood. Likelihood here means the conditional probability that
some model is correct given our observations (we’ll see this idea again when we get to
Bayesian statistics).

Akaike Information Criterion: 𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑘𝑘 − 2𝑙𝑙𝑙𝑙(𝐿𝐿)

 This formula implies that a greater number of parameters mean a higher AIC, and greater
likelihood means lower AIC (since you subtract the log likelihood from the number of
parameters). Thus, as we noted above, when we’re looking at AIC to see how good our model
is, we want the AIC to be as small as possible, indicating a better fit. Moreover, the simplicity
of the calculation means that the AIC values can be compared universally: any model with any
other model.
 In R, summary(lm(...)...) doesn’t give you the AIC value automatically, but you can ask
for it using the AIC() function. To illustrate this, let’s compare the with-intercept and no-
intercept models for the nativism.txt data set. Remember that I promised to show you how I
know that the with-intercept model actually has a better fit: here’s how!

native = read.delim("nativism.txt") # In case you lost it

Model with intercept
native.lm = lm(Accuracy ~ AgeAcquire + YearsUsing, data=native)
AIC(native.lm)

[1] -25.14485

Model without intercept
native.lm.noint = lm(Accuracy ~ 0 + AgeAcquire + YearsUsing, data=native)
AIC(native.lm.noint)

Ch. 10: Multiple regression

51

[1] -0.1229758

 With AIC, we care about the actual value, not the magnitude. Thus the AIC for the with-
intercept model (-25.145) is much lower than the AIC for the no-intercept model (-0.123), and
this implies that the with-intercept model has a better fit to the data.

4.1.2 Comparing model fit

 But how can we tell if such differences in model fit are statistically significant? The
simplest method is to use something called a likelihood ratio test, which checks whether
adding or removing a parameter to a model significantly improves or worsens the model’s fit
(that is, whether the likelihood of being the true underlying “cause” of the observed data is
higher for one model compared with another). The likelihood ratio is simplest to compute and
interpret if one model is nested within the other (i.e., one model merely adds or removes
parameters from the other). This nesting relationship holds for our two models of the nativism
data, since they only differ in whether or not we include the intercept:

With intercept: Estimated accuracy = b0 + b1AgeAcquire + b2YearsUsing
Without intercept: Estimated accuracy = b1AgeAcquire + b2YearsUsing

 The ratio involves dividing one variance (here, what’s explained by the complex model
but not by the simple model) by another (what’s not explained by the complex model). So
running the test uses a formula like the following, for simpler model 1 nested inside complex
model 2 (recall that MSS = mean sum of squares, a kind of variance, that RSS is also called
SSE, and that k = the number of model parameters):

𝐹𝐹 = 𝑀𝑀𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚
𝑀𝑀𝑆𝑆𝑆𝑆𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑏𝑏𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚

=
�𝑅𝑅𝑅𝑅𝑅𝑅1−𝑅𝑅𝑅𝑅𝑅𝑅2𝑘𝑘2−𝑘𝑘1

�

�𝑅𝑅𝑅𝑅𝑅𝑅2𝑏𝑏−𝑘𝑘2
�

 Because this particular F ratio is similar to what’s used in ANOVA, we can use R’s
anova() function to compute it for us, using lm() objects as the arguments. It’s best to put the
simpler model first, so the ANOVA table is arranged in a more intuitive way, but it works in
either order:

anova(native.lm.noint, native.lm)

Ch. 10: Multiple regression

52

Model 1: Accuracy ~ 0 + AgeAcquire + YearsUsing
Model 2: Accuracy ~ AgeAcquire + YearsUsing

 Res.Df RSS Df Sum of Sq F Pr(>F)
1 24 1.20288
2 23 0.42546 1 0.77742 42.027 1.292e-06 ***

 This table shows the two dfs for F (residual df, from the number of data points and
parameters, and the model df, derived from the difference in the number of parameters across
models), residual sum of squares (RSS), and the sum of squares (SS) for the model comparison.
Here the F value is huge, so the p value is tiny. Thus we could report this analysis like so: “A
likelihood ratio test showed that the with-intercept model had significantly better fit than the
no-intercept model (F(1,23) = 42.037, p < .0001).
 As I mentioned earlier, it’s best to always include an intercept in your regression model
anyway, but at least now we can justify this convention for this particular data set.
 If you think about it, you may be able to see that we can also use a likelihood ratio test as
an alternative way to test the significance of each parameter in the model. For example, let’s
go back to freqdur.txt again, and test the significance of LogFreq in two ways: first, the easy
way (using summary(lm(...)), which tests significance with t values), and then by comparing
a model with LogFreq present with a nested model that’s just like it, but is missing LogFreq
(to see if the model with LogFreq has a better overall fit).
 Here’s the easy way again (in the output, I only show the LogFreq part):

fd.lm = lm(Dur ~ LogFreq + AoA + Fam, data = fd)
summary(fd.lm) # Showing just the part for LogFreq

 Estimate Std. Error t value Pr(>|t|)

LogFreq -1.1815 0.5630 -2.099 0.0360 *

 Now here’s the new way using a log likelihood test. We start by creating a model without
LogFreq:

fd.lm.nofreq = lm(Dur ~ AoA + Fam, data = fd)
summary(fd.lm.nofreq) # Take a look if you're curious, but it's not crucial

 Actually, there’s an easier way to modify an existing model, by using the update()
function, which takes as arguments the original lm() object and a sketch of a formula with dots
for everything except the change you want:

fd.lm.nofreq.lazy = update(fd.lm, . ~ . - LogFreq) # Remove LogFreq from full model
summary(fd.lm.nofreq.lazy) # It's the same, right?

Ch. 10: Multiple regression

53

 OK, now for the likelihood ratio test, again putting the simpler model first:

anova(fd.lm.nofreq, fd.lm)

Model 1: Dur ~ AoA + Fam
Model 2: Dur ~ LogFreq + AoA + Fam

 Res.Df RSS Df Sum of Sq F Pr(>F)
1 1686 1043708

2 1685 1040987 1 2720.8 4.404 0.036 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

 In this case we get exactly the same p value for LogFreq that we got before, which is
comforting: we can trust these p values, it seems. However, this kind of matching results
doesn’t always happen, as we’ll see when we look at more complex models in later chapters
(so we’ll need to discuss when to use which analysis and why).
 Likelihood ratio tests can also help you find out whether two coefficients within a single
model are significantly different from each other.
 For this example, let’s go back to the nativism.txt data. In the better-fitting with-intercept
model, only AgeAcquire is significant, and it also has a large standardized coefficient than
YearsUsing. But does this also mean that AgeAcquire actually plays a statistically more
important role than YearsUsing? Not necessarily. Perhaps the lack of significance for
YearsUsing is a Type I error, and perhaps its smaller standardized coefficient is also just bad
luck.
 This kind of situation comes up a lot: we have multiple variables in a multiple regression,
and we not only want to know if they are individually significant, but also to compare them
statistically. Amazingly, it’s possible to answer this kind of questions with likelihood ratio test
on nested models. I give a step-by-step example showing this in Myers (2012).
 The trick is to compare our full model, where the two key coefficients are allowed to be
different, with a simpler model that requires the two coefficients to be the same:

Simpler model: ŷ = b0 + b1x1 + b2x2, where b1 = b2
Full model: ŷ = b0 + b1x1 + b2x2

 These two models don’t look nested, and the F formula above is only valid for nested
models. (R actually lets you use anova() to compare non-nested models, as long as they are
based on the same data, but R’s documentation is unclear on how it works; maybe it’s using
bootstrapping methods, as discussed in Lewis et al., 2011.)
 Nevertheless, a bit of algebra shows that the above models really are nested (follow along
if you like algebra):

Ch. 10: Multiple regression

54

Simpler model: ŷ = b0 + b1x1 + b2x2, where b 1 = b 2
 = b0 + b1x1 + b1x2
 = b0 + b1(x1 + x2) {look for this piece nested below}
Full model: ŷ = b0 + b1x1 + b2x2
 = b0 + (b'1 + b'2)x1 +(b'1 - b'2)x2 {using invented b'1 and b'2 values}

 = b0 + (b'1 + b'2)x1 +(b'1 - b'2)x2
 = b0 + (b'1x1 + b'2x1) +(b'1x2 - b'2x2)
 = b0 + (b'1x1 + b'1x2) +(b'2x1 - b'2x2)
 = b0 + b'1(x1 + x2) +b'2(x1 - x2) {coefficients are derived, so...}
 = b0 + b1(x1 + x2) +b2(x1 - x2) {... we can use our usual symbols}

 Following this logic, we can compare these two models:

Simpler model: ŷ = b0 + b1(x1 + x2)
Full model: ŷ = b0 + b1x1 + b2x2

 The way to implement this in R’s formula syntax is to take the full model, written in the
normal way, and then for the simpler model, make use of the identity function I() to force R to
add together x1 and x2 and compute a single coefficient for them. In other words, you compare
a model with two separate independent variables against a simple model with a single
independent variable that is the sum of these two.
 Let’s apply this trick to the nativism model:

native.lm = lm(Accuracy ~ AgeAcquire + YearsUsing, data=native)
native.lm.equal = lm(Accuracy ~ I(AgeAcquire + YearsUsing), data=native)
anova(native.lm.equal, native.lm)

 The result is significant (F(1,23) = 26.28, p < .0001). This means that we get a better
model fit if we use separate coefficients for AgeAcquire and for YearsUsing, which in turn
means that AgeAcquire has a significantly different effect from YearsUsing. Since we already
know the standardized coefficient for AgeAcquire is larger than that for YearsUsing, this in
turn implies that AgeAcquire has a significantly greater effect than YearsUsing. So maybe the
nativists really do win after all...?

4.2 Improving your model

 As we’ve implied throughout this chapter, regression models can a variety of problems.
If the residuals aren’t normal, this suggests that there’s another variable involved that you
should measure, so you can factor out its effects as well. If the model has too many parameters

Ch. 10: Multiple regression

55

(independent variables and their interactions), you might consider dropping some, in order to
raise your adjusted R2 and lower AIC value. If your independent variables are too confounded,
you may also want to drop one. Here we’ll discuss the confounding problem first, and then
discuss how to systematically adjust your model to deal with confounds or other such problems.

4.2.1 The challenge of collinearity

 Variables that are too highly correlated to tease apart are called collinear (同線) for the
same reason that a series of numbers is called a “vector”. Namely, a series of n numbers can
be thought of as describing an arrow aiming at a point in n-dimensional space, and completely
correlated vectors overlap on the same line.
 For example, the two vectors (1,2) and (2,4) are perfectly correlated, which means that
the two arrows aiming at them from the origin point (0,0) overlap perfectly (see Figure 16):

cor(c(1,2),c(2,4))

[1] 1

plot(c(1,2),c(2,4),xlim=c(0,5),ylim=c(0,5))
arrows(0,0,1,2) # Arrow to first point (thin solid line)
arrows(0,0,2,4,lty=2,lwd=2) # Arrow to second point (thick dashed line)

Figure 16. Totally collinear vectors

 Similarly, partially correlated variables give partially collinear vectors (I’ll let you plot
this yourself):

x = runif(10)
y = x + runif(10)/2 # This makes x and y partially correlated, right?
cor(x,y) # Yes indeed, |r| is quite close to 1

Ch. 10: Multiple regression

56

plot(x,y,xlim=c(0,1),ylim=c(0,max(y)))
arrows(0,0,x,y) # Cute!

 This math matters because collinearity poses a big challenge to regression modeling. For
example, if our independent variables are completely collinear, R just crashes! (The same kind
of crash happens in Excel - try it with your own fake data and you’ll see for yourself!)

x1 = rnorm(100)
x2 = 2*x1 + 1 # Any linear equation will make x2 totally collinear with x1
cor(x1,x2) # Completely collinear!
y = rnorm(100) # It doesn't matter what the dependent variable is; it'll never work
summary(lm(y~x1+x2)) # It can't figure out x2, just gives NA ("not available")
summary(lm(y~x2+x1)) # Now it can't figure out x1: NA again

 In other words, completely collinear independent variables are completely confounded:
you can’t tell which one “really” is affecting the dependent variable. This is too bad, since the
whole point of doing multiple regression is to see which factors are doing separately from all
of the others. For example, the AgeAcquire and YearsUsing represent innate and learned
factors, and even though they are partially correlated, linguists would really like to know how
to distinguish between them:

cor(native$AgeAcquire, native$YearsUsing)

[1] -0.6886916

 Fortunately, the situation isn’t hopeless. After all, |r| = .69 isn’t as strongly correlated as
|r| = 1. But how correlated is too correlated to trust in a regression analysis? As with p-values,
there’s no mathematically objective number for “dangerous collinearity”, but there are some
commonly used rules of thumb (經驗法則).
 One of them uses something called the variance inflation factor (VIF). You calculate
VIF for each independent variable xi by first computing the tolerance, which is the proportion
of variance in xi that is not explained by all of the other independent variables (i.e., 1-R2 for xi
~ xothers). You want the tolerance to be as high as possible (since then xi isn’t well predicted by
the other variables). VIF is the inverse, so you want VIFi for xi to be as low as possible:

𝑉𝑉𝐴𝐴𝐹𝐹𝑖𝑖 = 1
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖

= 1
1−𝑅𝑅𝑖𝑖2

 where Ri
2 is for the model xi ~ x1 + ... + xk (without xi)

 The rule of thumb is that if VIF is 5 or lower (or the tolerance is 1/5 or higher), then you
don’t have to worry about collinearity (implying that Ri

2 ≤ 4/5 = .8). Myers et al. (2006) is an
example of a study using tolerance to test for collinearity.

Ch. 10: Multiple regression

57

 Does the nativism.txt analysis survive this test? Let’s see. Rather than computing VIF by
hand, let’s load the package car again (Fox & Weisberg, 2011), which has a built-in function
for it, called vif():

library(car)
vif(native.lm)

AgeAcquire YearsUsing

1.902212 1.902212

 Both VIF values are the same, since we only have two variables here (so r2 is the same
for x1 ~ x2 and x2 ~ x1), and crucially, both are well below 5, so the rule of thumb says we don’t
have to worry about collinearity here.
 It’s also possible to test for collinearity in all of the model parameters as a group, by
computing the so-called condition number (條件數), which again you want to be as low as
possible. The math is based on the matrix formed by combining all of the independent variable
vectors into a grid (matrix) of numbers.
 The base version of R computes the condition number for a matrix using the kappa
function (for the Greek letter κ, for “/k/ondition”). The rule of thumb is that you want κ to be
no higher than 30, so again we’re safe here:
kappa(native[2:3]) # columns with independent variables

[1] 2.338944

 However, the matrix used in multiple regression includes that vector of 1s for the intercept
(remember?), which has to be treated in a special way. So following Belsley et al. (1980),
Baayen (2008) suggests using the function collin.fnc() in his package languageR. Again we
get a condition number well below 30 (plus a bunch of irrelevant warnings):

library(languageR)
collin.fnc(native[2:3])$cnumber

[1] 8.020331

 What about freqdur.txt? We saw that the three independent variables are correlated, but
are they so well correlated that we face a collinearity problem? We get different answers using
different methods:

vif(fd.lm) # Below 5, so no problem!

Ch. 10: Multiple regression

58

AoA Fam LogFreq
2.008592 3.533954 2.163047

kappa(fd[c("AoA","Fam","LogFreq")]) # Below 30, so no problem!

[1] 8.709643

collin.fnc(fd[c("AoA","Fam","LogFreq")])$cnumber # Above 30, so a problem!

[1] 32.40544

 Which one method is the “most right”? Unfortunately, I suppose it’s the third one, since
it’s the most mathematically sophisticated. Moreover, we’ve already seen that in our model,
Dur is significantly affected by LogFreq but not by Fam, even though the data were faked so
that Dur was computed using Fam but not LogFreq. Mabye this mismatch is partly due to an
overly large amount of collinearity? Yet on the other hand, we also have to be wary of Type II
errors, missing real patterns due to being overly cautious. As Johnson (2008) says: regression
is partly an art, not pure science.

4.2.2 Dealing with collinearity

 This principle (that regression is partly an art) is frustrating to some people, who want
their little statistics machine to pop out the One True Answer for every problem. This has led
to a popular (but controversial) method called stepwise regression. In this approach, you start
with a regression model and then add or remove independent variables from it one at a time, in
order to find the model that gives the best possible fit (without overfitting). R’s version of this
method, implemented in the step() function, uses the AIC to compare the fits of the models as
they grow or shrink.
 To use this function, we need to construct the simplest possible model, namely an “empty”
one that only has the intercept. Since the intercept is symbolized by 1 in R’s formula notation,
a model with only an intercept has the form y ~ 1. This may seem really weird, but it’s actually
equivalent to a one-sample t test on the dependent variable (testing the null hypothesis that its
mean is zero).
 So for the freqdur.txt data, the intercept-only model looks like this:

fd.lm0 = lm(Dur ~ 1, data = fd)

 You can see that it’s computing a one-sample t test by comparing the following; you get
the same t and p values for both, and the intercept in the intercept-only model is the same as
the mean in the one-sample t test (try it!):

Ch. 10: Multiple regression

59

summary(fd.lm0)
t.test(fd$Dur)

 Now we want to compare this empty model with the full fd.lm model. The step() function
compares this empty model with a formula describing the full model, including/dropping
parameters to find out which ones really improve the overall model fit:
summary(step(fd.lm0, Dur ~ LogFreq + AoA + Fam, data = fd))

 This gives you a long output, first showing each step in its search for the best model:

Start: AIC=10867.61
Dur ~ 1

 Df Sum of Sq RSS AIC
+ AoA 1 6733.1 1044058 10859
+ LogFreq 1 6082.2 1044708 10860
+ Fam 1 4906 1045885 10862
<none> 1050791 10868
Step: AIC=10858.75
Dur ~ AoA

 Df Sum of Sq RSS AIC
+ LogFreq 1 2597.0 1041461 10856
<none> 1044058 10859
+ Fam 1 349.5 1043708 10860
- AoA 1 6733.1 1050791 10868

Step: AIC=10856.55
Dur ~ AoA + LogFreq

 Df Sum of Sq RSS AIC
<none> 1041461 10856
+ Fam 1 473.2 1040987 10858
- LogFreq 1 2597.0 1044058 10859
- AoA 1 3247.9 1044708 10860
Call:
lm(formula = Dur ~ AoA + LogFreq, data = fd)

Residuals:
Min 1Q Median 3Q Max
-88.852 -16.007 -0.379 15.995 98.08

Ch. 10: Multiple regression

60

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 246.4429 2.9585 83.301 <2e-16 ***
AoA 1.2557 0.5476 2.293 0.022 *
LogFreq -0.8465 0.4128 -2.05 0.0405 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

Residual standard error: 24.85 on 1686 degrees of freedom
Multiple R-squared: 0.008879, Adjusted R-squared: 0.007703
F-statistic: 7.552 on 2 and 1686 DF, p-value: 0.0005429

 Unsurprisingly in this case, the stepwise procedure throws out Fam, the only independent
variable that’s not significant in the full model. But at least we can now say we determined this
in an “objective” way.
 However, many statisticians are quite critical of stepwise regression. For example, Baayen
(2008) has detailed discussions of how to do regression analyses (including tests for
collinearity and the normality of residuals), but he doesn’t mention stepwise regression at all.
Thompson (1995), Winter (2019, pp. 276-277) and many others argue against this method
explicitly.
 One big problem is that the probabilities in each step of stepwise regression are
conditional probabilities, assuming all of the previous steps. After all, the algorithm only
moves from one model to the next because of some property of the previous model. Yet the p
values that are computed in the final analysis don’t take any of these previous steps into
consideration. This implies that these p values may not be appropriate for our actual situation,
just as the p values from multiple comparisons may not be appropriate.
 More generally, there’s no reason to believe that stepwise regression is a magic formula
for finding statistical models; after all, even the experts disagree on the “best” way to apply
this kind of algorithm.
 And indeed, there are many other different methods that have been proposed to improve
regression models. This chapter is already too long to explain any in detail, but here are the
basic ideas behind two more of them, both from Baayen (2008).
 First, Baayen (2008) suggests trying to combine collinear variables into a single variable
that captures most of their variance. This only makes sense if the variables are also conceptually
related (i.e., multiple ways to measure the same real-world concept). For example, if we think
that familiarity judgments for words are really just a subjective way to measure objective
lexical frequency, then we could combine Fam and LogFreq together into one variable, as
opposed to age of acquisition, something that we might think reflects something very different,
like early brain development. To do this, Baayen recommends finding the principal
components of a set of variables (using R’s prcomp() function), and then replacing these

Ch. 10: Multiple regression

61

variables in your regression with the most important of these principal components (this would
be in prcomp()$x[,1]; use ?prcomp to learn more).
 Second, Baayen (2008) suggests a way to adjust your model if it seems to be overfitting
the data, that is, if it’s too complex to make useful predictions beyond your specific data set.
The method involves using a bootstrapping method to simulate random samples that you can
pretend come from the same population that you are testing with your sample, and then seeing
how well your model generalizes to all of those other data sets. If it doesn’t generalize well,
then your model is overfitted to your specific sample, and some variables should be dropped
to make the model simpler. To try this yourself, you have to install the rms package (for
“Regression Modeling Strategies”: Harrell, 2017; this packages updates Harrell’s old Design
package, that Baayen discusses in his book). You also have to redo your linear model using the
rms package’s ols() function (for “ordinary least squares”, which is how the residuals are
minimized in computing a linear regression), instead of R’s base function lm(). Finally, you
put your fitted ols model inside the rms package’s validate() function.
 As yet another alternative, you could stick with your original model and estimate the
relative importance of each predictor using the various options provided in R’s relaimpo
package (Grömping, 2006).
 In any case, returning to the statistics-as-art idea, it’s probably wisest to use your real-
world knowledge to fix a problematic model than to trust some textbook’s favorite “objective”
method. For example, going back to the first dumb example in this chapter, in a study on
children’s vocabularies you might find that height and age are too collinear to tease apart
mathematically in a multiple regression analysis. In that case, don’t do stepwise regression to
find out which is right, since from the real-world situation it’s already obvious that height is
the irrelevant one! Similarly, don’t include interactions in your model unless you have good
theoretical reasons to do so (as in our analysis of NBUP.txt): interactions between continuous
variables can be counterintuitive (as we discussed), and three- or four-way interactions are
often just too complex to understand, even for factorial data.

5. Conclusions

 Apologies again for the great length of this chapter, but I hope you can see why it was
necessary: regression truly lies at the heart of the most important statistical methods, from t
tests through ANOVA and then beyond ordinary linear regression itself. Computing a multiple
regression is easy, but understanding why it works, how to avoid mistakes, and how to fix the
mistakes takes a bit more effort. The core trick used by multiple regression is the same as in
ANOVA: partialing out the variance, so we can see how each independent variable affects the
dependent variable, in the context of all the other variables. Things get more complex with
regression than with ANOVA, however, because the variables may be partially correlated,

Ch. 10: Multiple regression

62

maybe even collinear. It’s also likely that your independent variables were not all
predetermined by some experimental design, as is usually the case with ANOVA, but instead
you have some freedom to try different variables to see what effect they have. Thus you have
to make lots of decisions: Do want to test for interactions (and if so, how should you plot them)?
Do you want to generate standardized regression coefficients to compare effect sizes, and
maybe even test whether two variables within a model are statistically different from each other?
How can you tell if a newly modified model fits the data better than the original model? How
should you recode your variables so that they make the most sense? Does it ever make sense
to remove the intercept? Once you get familiar with these concepts, however, you will find that
you need them again and again as we continue through this book (and as you continue beyond
this book), so all your hard work will pay off! Finally, the artistic side of statistics is particularly
prominent when it comes to regression, so let your real-world knowledge provide some
guidance too, not just the textbooks and self-proclaimed statistical experts!

References

Adler, D., Murdoch, D., et al. (2017). rgl: 3D visualization using OpenGL. R package.

https://CRAN.R-project.org/package=rgl
Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions.

London: SAGE.
Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review

and recommended two-step approach. Psychological Bulletin, 103(3), 411-423.
Baayen, R. H. (2001). Word frequency distributions. Dordrecht: Kluwer.
Baayen, R. H. (2004). Statistics in psycholinguistics: A critique of some current gold standards.

In G. Libben & K. Nault (eds.) Mental Lexicon Working Papers 1, 1-45.
Baayen, R. H. (2008). Analyzing linguistic data: A practical introduction to statistics using R.

Cambridge University Press.
Baron, J., & Li, Y. (2006). Notes on the use of R for psychology experiments and

questionnaires. University of Pennsylvania and Children’s Hospital of Philadelphia ms.
http://www.psych.upenn.edu/~baron/rpsych/rpsych.html

Belsley, D. A., Kuh, E., & Welsch, R. E. (1980) Regression diagnostics: Identifying influential
data and sources of collinearity. Wiley.

Chomsky, N., & Lasnik, H. (1977). Filters and control. Linguistic Inquiry, 8, 425-504.
Clark, H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in

psychological research. Journal of Verbal Learning and Verbal Behavior, 12, 335-359.
Coltheart, M. (1981). The MRC psycholinguistic database. The Quarterly Journal of

Experimental Psychology, 33(4), 497-505.

Ch. 10: Multiple regression

63

Cowart, W. (1997). Experimental syntax: Applying objective methods to sentence judgments.
Sage.

Crawley, M. J. (2007). The R book. John Wiley.
Fox, J. (2006), Structural equation modeling with the sem package in R. Structural Equation

Modeling, 13, 465-486
Fox, J., & Weisberg, S. (2011). An R companion to applied regression (2nd edition). Sage.
Gelman, A., & Stern, H. (2006). The difference between “significant” and “not significant” is

not itself statistically significant. The American Statistician, 60(4), 328-331.
Gravetter, Frederick J., & Wallnau, Larry B. (2004). Statistics for the behavioral sciences (6th

edition). Wadsworth.
Gries, S. Th. (2013). Statistics for linguistics with R: A practical introduction (2nd ed). De

Gruyter.
Grömping, U. (2006). Relative importance for linear regression in R: the

package relaimpo. Journal of Statistical Software, 17(1), 1-27.
Harrell, F. E. (2017). The RMS package for R: Regression modeling strategies. R package

version, 5.1-0.
Johnson, K. (2008). Quantitative methods in linguistics. Wiley.
Lenth, R. V. (2016). Least-squares means: The R package lsmeans. Journal of Statistical

Software, 69(1), 1-33.
Lenth, R. V. (2022). emmeans: Estimated Marginal Means, aka Least-Squares Means.
 R package version 1.7.3. https://CRAN.R-project.org/package=emmeans
Lewis, F., Butler, A. & Gilbert, L. (2011). A unified approach to model selection using the

likelihood ratio test. Methods in Ecology and Evolution 2011, 2, 155-162.
Loftus, G. R., & Masson, M. E. J. (1994). Using confidence intervals in within-subject designs.

Psychonomic Bulletin & Review, 1, 476-490.
Lorch, R. F., & Myers, J. L. (1990). Regression analyses of repeated measures data in cognitive

research. J. of Experimental Psychology: Learning, Memory, and Cognition, 16 (1), 149-
157.

Maddieson, I. (1984). Patterns of sounds. Cambridge University Press.
Maindonald, J., & Braun, J. (2003). Data analysis and graphics using R: An example-based

approach. Cambridge, UK: Cambridge University Press.
Max, L., & Onghena, P. (1999). Some issues in the statistical analysis of completely

randomized and repeated measures designs for speech, language, and hearing research.
Journal of Speech, Language, and Hearing Research, 42, 261-270.

Myers, J. (2009). Syntactic judgment experiments. Language & Linguistics Compass, 3 (1),
406-423.

https://cran.r-project.org/package=emmeans

Ch. 10: Multiple regression

64

Myers, J. (2012). Testing phonological grammars with lexical data. In J. Myers (Ed.) In search
of grammar: Empirical methods in linguistics (pp. 141-176). Language and Linguistics
Monograph Series 48. Taipei, Taiwan: Language and Linguistics.

Myers, J. (2015). Markedness and lexical typicality in Mandarin acceptability judgments.
Language & Linguistics, 16(6), 791-818.

Myers, J., Huang, Y.-C., & Wang, W. (2006). Frequency effects in the processing of Chinese
inflection. Journal of Memory and Language, 54, 300-323.

Myers, J., Tsay, J. S., & Su, S.-F. (2011). Representation efficiency and transmission efficiency
in sign and speech. In J. Chang (Ed.) Language and cognition: Festschrift in honor of
James H-Y. Tai on his 70th birthday (pp. 171-199). Taipei: Crane Publishing.

Nieuwenhuis, S., Forstmann, B. U., & Wagenmakers, E. J. (2011). Erroneous analyses of
interactions in neuroscience: a problem of significance. Nature Neuroscience, 14(9),
1105-1107.

Raaijmakers, J. G. W., Schrijnemakers, J. M. C., & Gremmen, F. (1999). How to deal with
“the language-as-fixed-effect fallacy”: Common misconceptions and alternative solutions.
Journal of Memory and Language, 41, 416-426.

Schad, D. J., Vasishth, S., Hohenstein, S., & Kliegl, R. (2020). How to capitalize on a priori
contrasts in linear (mixed) models: A tutorial. Journal of Memory and Language, 110,
104038.

Sternberg, S. (1998). Discovering mental processing stages: The method of additive factors. In
D. Scarborough & S. Sternberg (Eds.), An invitation to cognitive science, vol. 4: Methods,
models, and conceptual issues (pp. 703-863). MIT Press.

Thompson, B. (1995). Stepwise regression and stepwise discriminant analysis need not apply
here: A guidelines editorial. Educational and Psychological Measurement, 55(4), 525-
534.

Winter, B. (2019). Statistics for linguists: An introduction using R. Routledge.
Witte, R. S. (1989). Statistics. Holt, Rinehart and Winston.

