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1. Introduction 
 
 Remember the dumb example from several chapters ago, where I pointed out that you can 
predict a child’s vocabulary size from his or her height? That’s true because vocabulary size 
and height are themselves both predicted by a third factor, namely age, which actually has a 
causal connection with the others, not just a mere correlation. In other words, height is partially 
confounded with age, and we need to separate out their effects (if any) to see how each actually 
influences vocabulary size. 
 If we can measure all of the potential partial confounds, we can tease apart all of their 
effects using a generalization of simple regression called multiple regression, where there can 
any number of independent variables, not just one. (In principle we don’t even need to be able 
to measure all of the independent variables; an approach called structural equation modeling 
can help detect unobserved, and possibly causal, variables; we won’t discuss it in this book, 
but you can read more about it in Anderson & Gerbing, 1988, or try out R’s sem package [Fox, 
2006].) 
 Multiple regression doesn’t generalize only simple regression. Since the independent 
variables can be either continuous values or categorical, it’s a generalization of t tests and 
ANOVA as well. The way it teases apart the independent variables is directly related to the 
partitioning of the variance used in ANOVA, and it is even possible to test for interactions 
between continuous independent variables. Like these other methods, however, multiple 
regression is still a parametric method, computing statistical significance on the basis of the 
Central Limit Theorem and its assumptions about normality and the relationship between 
samples and null hypothesis populations. Also like these other models, multiple regression is 
also a kind of linear model, since it assumes that the relationship between each independent 
variable and the dependent variable forms a straight line (aside from transformations like 
lognorming or polynomial functions). 
 Not only are most of the tests you’ve learned so far in this book just special cases of 
multiple regression, but multiple regression is also the basis for almost all of the other tests 
you’re going to learn later in this book. Remember how we only had a few, highly restricted 
tests for analyzing categorical data (e.g., chi-squared tests)? Well, by generalizing multiple 
regression a bit more, we get logistic regression and Poisson regression, which let you 
analyze categorical data with all of the power and flexibility of linear regression. Remember 
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how annoying it is that when using ANOVA for a bunch of linguistic forms (e.g., words) tested 
on a bunch of participants, you have to do both by-participant and by-item analyses, and then 
somehow combine them together again? Well, by generalizing multiple regression to include 
not just fixed variables but also random variables, we get mixed-effects modeling, which lets 
us do what we want to do with those two ANOVA tests, but all in one step. We can even 
combine mixed-effects modeling with logistic regression, so we can do by-participant and by-
item analyses on categorical data, like accuracy (correct vs. incorrect). 
 Of course, all of this power of multiple regression comes with costs (nothing in life is 
free). Because this method allows you to include any independent variable (and interactions 
between variables) that you want to test, you become obligated to justify your particular choice 
of variables (and interactions). Thus a good portion of this chapter will be spent discussing how 
to test the goodness of fit of a model, how to compare models, and how to adjust models if they 
have problems. All of these complexities make this the longest chapter in the whole book. 
 But there is some good news too: the core logic of multiple regression is so simple that 
even Excel can do it. Comparing models and other fancy things still require a full-fledged 
statistics program like R, but if you just want to run multiple linear regression, then Excel can 
do almost everything you need. 
 
2. Multiple regression 
 
 As usual, let’s start with some simple examples, and then explain how the math behind 
them works, in particular some notions that we’ve mentioned before but haven’t discussed in 
detail yet (intercept, residuals, coefficients). 
 
2.1 Frequency and durations again 
 
 The basic idea of multiple regression can be sketched with that dumb vocabulary size 
example again. Suppose that we wondered whether it’s really true that taller kids have larger 
vocabularies only because taller kids tend to be older, and not because height somehow affects 
vocabulary size too. To find out which variable is actually relevant, we should use a multiple 
regression model like this: 
 
VocabularySize ~ Height + Age 
 
 Now if we get a significant effect of Height on VocabularySize, even with the effect of 
Age partialed out, then it looks like maybe height really does have a separate effect. Of course, 
there might be some other (third) variable that’s confounded with Height. For example, maybe 
height increases with better nutrition, which may correlate with the wealth of with the kid’s 
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family, which may correlate with better education, which may correlate with a larger 
vocabulary. No problem, just throw in these variables as well: 
 
VocabularySize ~ Height + Age + Nutrition + Wealth + Education 
 
 Already you might think of a problem, however. What if these variables are too strongly 
correlated with each other to partial out their effects? This wasn’t a problem for two-way or 
other multi-way ANOVA, since those involved categorical variables that could be fully crossed. 
For example, in the experiment with the colored rooms and the different genders, we had data 
for all possible combinations of colors and genders. But in a multiple regression, the 
independent variables don’t have to be categorical. What if, for example, people with higher 
wealth always have better nutrition, and there are no kids (or very few kids) who are poor but 
get good nutrition or who are rich but get bad nutrition? In that case, the variables of Wealth 
and Nutrition will to be too confounded to tease apart; multiple regression is math, not magic. 
 
2.1.1 Multiple regression in Excel 
 
 Let’s play around with these ideas using a data set that we’ve already played with before. 
 Fred the Phonetician hypothesized that every time a Martian produces a word, the 
articulatory system gets more efficient at producing that word, causing the word to become 
phonetically shorter. To test this hypothesis, he collected the data in freqdur.txt (remember 
that file?), which gives the mean durations in milliseconds from a large number of Martians 
pronouncing a large number of monosyllabic Martian words (all with CVC structure). 
 However, Frieda and Frodo didn’t believe Fred’s hypothesis. Frieda thought that Martians 
shorten words more if they are familiar, and Frodo thought they do so if the words were learned 
early in life. Fred, Frieda, and Frodo decided to collaborate to see what happens if their analysis 
includes not just log frequency, but also familiarity (Fam), representing how familiar (1 = least, 
7 = most) each word seemed to a large number of previously tested Martians, and age of 
acquisition (AoA), representing the age (1 = youngest, 7 = oldest) for first learning the word, 
as claimed by a large number of previously tested Martians. 
 As I mentioned in an earlier chapter, the values for frequency, familiarity and age of 
acquisition are real English data), adapted from the MRC Psycholinguistic Database (Coltheart, 
1981: http://websites.psychology.uwa.edu.au/school/MRCDatabase/uwa_mrc.htm). The 
duration values are fake, though. How did I create them? Well, I used Excel to compute the 
following equation (notice the equals sign, rather than ~, since this is literally a sum of 
numbers): 
 
Dur = 250 + (+1) ×AoA + (-1) ×Fam + (0) × LOG(Freq) + residuals 

http://websites.psychology.uwa.edu.au/school/MRCDatabase/uwa_mrc.htm
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 The intercept was fixed at 250; this represents a realistic “default” syllable duration (i.e., 
when all of the independent variables are zero). The residuals are random numbers (a different 
one for each “word”). They should be normally distributed for real data, but I used Excel’s 
=RAND() function instead, which creates uniformly distributed numbers (this choice may be 
partly responsible for some of the odd results we’ll see below, since multiple regression 
assumes the residuals are normal). AoA, Fam, and Freq are the corresponding values for each 
“word”. The values +1, -1, and 0 are the coefficients for these three independent variables, 
respectively. With these coefficients, we expect to get a significant positive effect of AoA, a 
significant negative effect of Fam, and no significant effect of Freq (or LOG(Freq)). 
 In other words, I faked the data so that Frieda is right (familiarity shortens duration), Frodo 
got it backwards (early acquisition actually lengthens duration), and Fred is totally wrong 
(frequency doesn’t correspond with duration at all). However, as we saw in that earlier chapter, 
these three real variables are also significantly correlated with each other. Can multiple 
regression really tease apart these partially confounded variables? 
 Let’s try it in Excel first. We start with lognorming Freq as usual; to compare the results 
with R, let’s use =LN() (identical to R’s log() function; remember that Excel’s =LOG() 
function is identical to R’s log10() function). Let’s call that new variable LogFreq (putting it 
into a new column inserted next to the other independent variables; all independent variables 
have to be right next to each other). Then we start up the regression (迴歸) tool in Excel’s 
Analysis ToolPak, just as we did in that earlier chapter, with Dur as the dependent variable (Y), 
but this time when we select the independent (X) variables, we select all three of them (AoA, 
Fam, LogFreq: make sure they are all right next to each other, and remember that when using 
the Analysis ToolPak you have to use the mouse to select exactly the range of cells with the 
data, not the entire columns). If you also selected the column labels, you’ll get a result that 
looks something like this: 
 
迴歸統計  ANOVA     
R 的倍數 0.09659   自由度 SS MS F 顯著值 
R 平方 0.00933  迴歸 3 9803.39 3267.797 5.289438 0.001247 
調整的 R 平方 0.007566  殘差 1685 1040987 617.7966   

標準誤 24.85551  總和 1688 1050791       

觀察值個數 1689        
 
 係數 標準誤 t 統計 P-值 下限 95% 上限 95% 
截距 240.215 7.706572 31.17014 8.4E-169 225.0995 255.3304 

LogFreq -1.18149 0.562998 -2.09857 0.036003 -2.28574 -0.07724 

AoA 1.664269 0.719628 2.31268 0.02086 0.25281 3.075727 

Fam 1.130237 1.291395 0.875207 0.381586 -1.40267 3.663144 
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 Following the style recommendations of the APA (American Psychology Association), 
we can show the entire table, but use “B” to represent the coefficients column, as shown below 
(I’ve also arbitrarily decided to round all the values to two digits past the decimal point). Using 
“B” for coefficients is derived from the use of “b” for the slope in simple regression (where “a” 
is the intercept), but in a multiple regression, we may have so many independent variables that 
we run out of letters in the alphabet, so all of them are called “b”, just with different subscripts: 
the intercept is technically b0, the first coefficient after that is b1, and so on. Even more 
technically, these b coefficients should be written with little hats (like b̂), since like the y-hat 
(ŷ) we saw in the correlation chapter, these coefficients are estimates, not the actual coefficients 
that I used to fake the data (or that Nature would “use” if this were a real data set). 
 
 B SE t p 
Interept 240.22 7.71 31.17 < .0001 

LogFreq -1.18 0.56 -2.10 .04 

AoA 1.66 0.72 2.31 .02 

Fam 1.13 1.29 0.88 .38 

 
 If we want to a highlight specific result from this table, we can do so like this: “Log 
frequency had a significant effect on syllable duration (B = -1.18, SE = 0.56, t(1685) = -2.10, 
p = .04).” Most of these values come right from the table, but maybe you also remember that 
the t value is actually B/SE = -1.18149/0.562998 = -2.09857. The p value is two-tailed (and as 
usual we’ll ignore the confidence interval information), which you can confirm yourself with 
=2*T.DIST(-ABS(t), df, TRUE) (i.e., cumulative=true) = 2*T.DIST(-ABS(-2.09857), 1685, 
TRUE) = 0.036003346. 
 But where did I get that df value from? For each parameter in a linear regression, this is 
calculated like so: 
 
df = n – k  (n = number of observations, k = number of model parameters) 
 
 Here, the parameters are not the mean and standard deviation of parametric statistics 
(though linear regression is indeed an example of parametric statistics). Instead, the parameters 
here are the fixed variables that define the model, including the intercept (and any interactions, 
discussed later). In other words, it’s the number of rows in the regression table. So, in our 
model, we have four parameters: the three independent variables (AoA , Fam, and log Freq) 
plus the intercept. Excel’s first regression table shows that n (觀察值個數) is 1689, and to get 
the df we subtract 4 from it, to get 1685. 
 Do these results make sense, given how I faked the data? Look at the three independent 
variables. Who wins, Fred, Frieda or Frodo? It should be Frieda, right? She’s the one who 
thinks Fam is the crucial variable, and that’s what it says in the “true” equation that I used to 
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fake this data set (BFam = -1). Frodo should get it exactly backwards (BAoA = +1), and Fred 
should be totally wrong (BFreq = 0). 
 But that’s not what the regression analysis shows! Instead, the estimated b̂Fam = 1.13 (and 
it’s not even significant: p = .38), b̂AoA = 1.66 (significant: p = .02), and b̂Freq = -1.18 (also 
significant: p = .04). This implies an estimated equation like below (compare with the “true” 
equation, repeated here): 
 
Est: Dur ~ 240 + (1.66) AoA + (1.13) Fam + (-1.18) LogFreq 
True: Dur ~ 250 + (+1) AoA + (-1) Fam + (0) LogFreq 

 
 How can this be? It may partly be because of the non-normal residuals I used to fake the 
data, but it’s also because those three variables are partially correlated with each other. Excel 
is faithfully partialing out the variance associated with each independent variable (and the 
intercept), but in the course of this procedure, it’s taking some of the variance that is “truly” 
associated with one variable and moving it over to another variable, due to the correlation. That 
is, it’s trying to find the most elegant solution for the data set as a whole. 
 To get an intuitive feel for why the multiple regression ends up this way, look at the 
correlation coefficients (r) for each pair of independent variables (which you can compute 
using =CORREL()^2), as shown in Table 1. 
 
Table 1. Pearson’s correlation coefficients for each pair of independent variables 
 
 LogFreq Fam 
AoA -.37460 -.68834 
Fam .715114  

 
 Remember that r = 1 implies a perfect positive correlation and r = -1 implies a perfect 
negative correlation. Now look at the correlations of Fam with each of the other two variables. 
They are almost exactly opposite: Fam is strongly positively correlated with LogFreq, but 
strongly negatively correlated with AoA. So it’s not surprising that when all three variables are 
added together in a single regression equation, these two correlations cancel out, and Fam ends 
up having no significant effect at all. Working out exactly why the intercept and other 
coefficients change how they do wouldn’t be a lot of fun, but I hope the core logic should be 
somewhat clearer now. 
 So, as I said, multiple regression is math, not magic. Those coefficients with the hats are 
just estimates, and the p values are telling you something about how the variance was divided 
up, but it’s not wise to interpret your results as being the truth. All it is our best estimate of the 
truth, given the messy real-life data that we have to deal with. 
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 And even though this data set is fake, I faked it in a way that it’s extremely messy. Indeed, 
while the residuals have a mean of zero (as residuals should), their standard deviation is a 
gigantic 25 ms! This is much bigger than the change in duration generated by the “true” 
equation as we vary the three independent variables, since I made those coefficients (slopes) 
very tiny (0, -1, +1). For example, Fam has a “true” coefficient of -1, so we expect that changing 
from the minimum Fam score of 1.28 to the maximum Fam score of 6.57 (you can confirm 
these values yourself), we should see Dur decrease by only 5.29 ms. That tiny little difference 
is just swamped by the huge variation in Dur created by the residuals, with a minimum of 161 
ms and a maximum of 348 ms! 
 Since so much of the variance in the “observed” Dur values are due to noise, our 
regression model actually fits the data very badly. You can see that in Excel’s first table, which 
shows a value called “R 平方”, which is just Pearson’s coefficient of determination r2, 
generalized to multiple regression, so it’s symbolized with a capital letter: R2. Remember that 
this value represents the proportion of variance in the dependent variable that is predicted by 
the model (in this case, predicted by the entire multiple regression). But the value we’re given 
is the extremely tiny .0093, which is less than 1%! Excel also gives us something called “調整

的 R 平方” (adjusted R2), which takes model complexity into account (i.e., it penalizes you 
if your model has more independent variables than you need). Since our model has useless 
variables in it, this adjusted R2 is even lower: .008. 
 Note that this value is essentially a measure of effect size for the model as a whole, exactly 
the same as eta-squared for ANOVA (which is a special case of multiple regression). It is not 
a measure of the model’s statistical significance, which is instead reported in Excel’s ANOVA 
table: F(3, 1685) = 5.29, MSE = 617.80, p = .001 (can you find where I got these values?). So 
even though the model as a whole does better than chance at describing the “observed” data, it 
actually does a pretty terrible job for real-life purposes: the model actually predicts less than 
1% of the observed variance. 
 
2.1.2 Multiple regression in R 
 
 You can get basically the same results in R too, of course, and you already basically know 
how: use the lm() function, since we’re building a linear model. Since it’s a multiple regression 
model, without any interactions, we want to use the formula notation to write something like 
Y ~ X1 + X2 + .... 
 First let’s load the data in again, and the lognorm Freq (using log(), which is equivalent 
to Excel’s =LN() function, which you were supposed to use in the previous subsection). 
 
fd = read.delim("freqdur.txt") 
fd$LogFreq = log(fd$Freq) 
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 Now let’s create and name the linear model object (fd.lm), and use summary() to display 
the most important information about it (see results below). 
 
fd.lm = lm(Dur ~ LogFreq + AoA + Fam, data = fd) 
summary(fd.lm) 
 
 The coefficients (here called “estimates”, since indeed they are merely estimated) and 
associated values (SE, t, p) are the same as for Excel’s report. The R2 and adjusted R2 values 
are also the same, as is the statistical results for the overall model (see the F value, two df 
values, and p value?). 
 R also gives us information about the shape of the residuals, shown in a table rather than 
in terms of a plot: the minimum, maximum, median (right in the middle), and the first quartile 
(1Q) and third quartile (3Q), which are right in the middle of the minimum and median, and 
median and maximum (respectively). The median is close to zero and the two values on the 
left are symmetrical with those on the right (i.e., around -90 and -16 on the left and around +16 
and +90 on the right). 
 
Call: 
lm(formula = Dur ~ LogFreq + AoA + Fam, data = fd) 
 
Residuals: 

Min 1Q Median 3Q Max 
-89.056 -15.864 -0.114 16.105 97.951 

 
Coefficients: 
 Estimate Std. Error t value Pr(>|t|)  

(Intercept) 240.215 7.7066 31.17 <2e-16 *** 
LogFreq -1.1815 0.5630 -2.099 0.0360 * 
AoA 1.6643 0.7196 2.313 0.0209 * 
Fam 1.1302 1.2914 0.875 0.3816  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 
 
Residual standard error: 24.86 on 1685 degrees of freedom 
Multiple R-squared:  0.00933,   Adjusted R-squared:  0.007566  
F-statistic: 5.289 on 3 and 1685 DF,  p-value: 0.001247 
 
 If you want to make R give you a full ANOVA table, the way Excel does, you can put the 
model inside the anova() function, though R’s table actually tests each independent variable, 
not the overall model as Excel does (since R instead gives the whole-model F and p values in 
the default summary): 
 
anova(fd.lm) 
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Analysis of Variance Table 
 
Response: Dur 
 Df Sum Sq Mean Sq F value Pr(>F)  

LogFreq 1 6082 6082.2 9.845 0.001732 ** 
AoA 1 3248 3247.9 5.2573 0.021978 * 
Fam 1 473 473.2 0.766 0.381586  

Residuals 1685 1040987 617.8    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 
 
 This ANOVA table reveals that even though ANOVA is a special case of regression, the 
actual algorithms are different. In particular, the lm() function tests all independent variables 
at the same time, in one step. By contrast, as we saw in the previous chapter, the ANOVA 
algorithm, whether implemented in aov() or anova(), the variables are tested sequentially, first 
maximizing the overall data fit just for the first variable, then looking at the residuals left over 
from this first step and seeing how much of it can be explained by the second variable, and so 
on. You can see for yourself that order doesn’t matter for lm() but does for anova(): 
 
fd.lm.reorder = lm(Dur ~ Fam + LogFreq + AoA, data = fd) 
summary(fd.lm.reorder) # The same coefficient table as before, just in a different order 
anova(fd.lm.reorder) # Now Fam is significant and LogFreq isn't! 
 
 When would you need to use anova() on a linear model? Perhaps you have some real-
world reason to want to factor out certain variables before others, or perhaps one of your 
variables is a multi-level factor, rather than a number, and you want to see what its overall 
effect is, rather than the effects of specific levels within it (since, as we’ll see later in this 
chapter, a multi-level factor is treated as a set of factors in multiple regression). 
 Finally, just as with other R objects, you can extract just specific values, instead of 
displaying the entire summary. For example, if you want to extract just the R2 value for fd.lm, 
that’s in the r.squared component of the object created by summary(lm()); you can explore 
its other components by typing ?summary.lm (this trick usually, but not always, works to find 
out how context-dependent functions behave different with different arguments). 
 
summary(fd.lm)$r.squared 
 
[1] 0.009329537 
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2.2 More about the math behind multiple regression 
 
 Don’t worry, this section is going to be a particularly entertaining math section, because 
along the way I’m going to show you how to create a 3D cube of dots in R, and you can actually 
move it around with your mouse, like a video game! Yay! 
 But first, the boring part. Remember from the correlation chapter that ŷ (pronounced y-
hat) represents the best linear estimate for the data: 
 
Simple linear regression:  ŷ = a + bx 
 
 The same logic continues to be valid if we add more independent variables and their 
coefficients: 
 
Multiple linear regression: ŷ = b0 + b1x1 + b2x2 + ... + bkxk (b0 is the y-intercept) 
 
 Also remember that the estimated y-hat model is part of a larger model that also includes 
the residuals (殘餘值 ), that is, the difference between the true and estimated values, 
representing the random error (ε) (we use y now instead of ŷ since these are your actual values): 
 
Simple linear regression:  y = ŷ + ε = a + bx + ε 
Multiple linear regression: y = ŷ + ε = b0 + b1x1 + b2x2 + ... + bkxk + ε 
 
 Now, literally speaking, only a simple linear regression equation plots an actual one-
dimensional (1D) line. If you have two independent variables rather than one, the equation 
actually describes a two-dimensional (2D) plane (平面), and if you have three independent 
variables, you get a three-dimensional (3D) space, and so on. Moreover, to plot a simple 
regression you need a 2D plane (xy plane), to plot a multiple regression with two independent 
variables you need a 3D cube (xyz space), and so on. 
 All of these plots assume that the points are defined by crossing the variables at right 
angles (i.e., 90° angles): each variable is perpendicular (垂直的) to all of the others. This 
trick is how multiple regression partials out the variance contributed by each independent 
variable. 
 You can get a hands-on feeling for this logic if we consider a multiple regression with two 
independent variables, let’s say just the portion of freqdur.txt that predicts Fam from LogFreq 
and AoA. This is a reasonable thing to analyze anyway, since adult judgments of familiarity 
are likely to reflect some combination of lexical frequency and the age of acquisition, and it 
has the added advantage of using entirely real data (from English words). 
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 The following equation thus describes a best-fitting plane in a 3D cloud of dots, which 
minimizes the squares of the vertical distance of each point from the plane: 
 
Fam ~ b0 + b1LogFreq + b2AoA 
 
 To start our game, first install the rgl package (Adler et al., 2017), which links R with 
something called OpenGL (open graphics library, i.e., a sharable set of computer code for 
making fancy graphics): 
 
library(rgl) # You have to install this package first 
 
 To keep the plot nice-looking, let’s attach the freqdur.txt data frame and avoid that 
cumbersome $ notation: 
 
attach(fd) 
 
 And now here’s our 3D plot of the scatter plot with Dur on the vertical z axis and AoA 
and Fam defining the xy plane at the bottom of a 3D. Use your mouse to rotate it so you can 
see it from different perspectives (Figure 1 shows a couple of them; note that both are cubes, 
if your brain sees the proper square as closer to the “camera”; rotating it will make this clear). 
 
plot3d(x= LogFreq, y=AoA, z= Fam) 
 

 
Figure 1. A 3D scatter plot from two different perspectives 
 
 Now let’s build a multiple regression model predicting Fam from LogFreq and AoA: 
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fd.lm2 = lm(Fam ~ LogFreq + AoA) 
summary(fd.lm2) # Take a look at it yourself! 
 
 This analysis is much more satisfying than my fake Dur data, since everything is 
enormously significant (all ps < .0001). Based on the coefficients, the equation for the best-fit 
plane must look like this: 
 
Fam ~ 5.51 + 0.296LogFreq - 0.362AoA 
 
 This describes a plane that is tilted at a slope around 0.3 along the LogFreq axis, and tilted 
at a slope around -0.36 on the AoA axis. The first step to create the regression plane is to extract 
these regression coefficients (instead of having to copy/paste them from the summary): 
 
coefs = coef(fd.lm2) # Extract the regression coefficients 
coefs # Take a look yourself! 
 
 To use the planes3d() function, we have to recode the plane in terms of its four parameters 
a, b, c, d, which indicate the plane equation in this weird way: 
 
ax + by + cz + d = 0 
 
 That is, a and b are the coefficients of the two independent variables, d is the intercept, 
and z is usually -1, in order to make the equation turn into this: 
 
z = d + ax + by 
 
 With that background, let’s run the code (alpha is an argument controlling the degree of 
shading of the plane, where 0 = clear and 1 = black, so alpha = 0.3 makes it light gray): 
 
a = coefs["LogFreq"] 
b = coefs["AoA"] 
c = -1 
d = coefs["(Intercept)"] 
planes3d(a, b, c, d, alpha=0.3) 
 
 Figure 2 shows one perspective of the 3D dot cloud with the regression plane, but you can 
rotate it any way you like. 
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Figure 2. A 3D scatter plot with regression plane 
 
 Now rotate the cube so that the plane disappears into a thin line. You can see that the dots 
are roughly equally distant below and above the plane, but not perfectly, since what’s being 
minimized is the vertical distances along the z-axis (i.e., the Fam axis), and the best-fit plane 
is tilted (see Figure 3). 
 

 
Figure 3. 3D scatter plot with regression plane level with the “camera” 
 
 If you rotate the cube so that one square is facing you, with LogFreq at the bottom, the 
LogFreq values going up from left to right, and Fam at the side, you’ll see the positive 
correlation between LogFreq and Fam implied by the positive coefficient 0.30 (see left side of 
Figure 4). Now rotate it so that there’s a square with AoA at the bottom (and AoA values going 
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up from left to right) and Fam at the side: this shows the negative correlation between AoA 
and Fam implied by the negative coefficient -0.36 (see right side of Figure 4). 

 

Figure 4. Correlations of Fam with Log Freq (left) and with AoA (right) 
 
 Notice that the gray plane does not seem to line up perfectly with the dots from these 
perspectives. This is because the plane doesn’t represent two separate simple regression lines, 
but instead is attempting to find the best balance of both independent variables at the same time. 
These two variables are negatively correlated, so there is no way to please them both 
completely. 
 You can see their negative correlation (in the dots, not the plane) if you rotate the cube 
again, so that the square facing you has LogFreq and AoA on the sides (i.e., you’re looking 
straight “down” or “up” into the cube), as shown in Figure 5. 
 

 
Figure 5. The correlation between the two independent variables 
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 Now that we’re done playing, we’d better detach the fd data frame so we don’t get in 
trouble later on: 
 
detach(fd) 
 
 Anyway, I hope that you can see now that just as a simple regression model can be 
intuitively understood as the line that best fits the dots in an xy plane, by minimizing the 
residuals on the axis defined by the dependent variable, so too the multiple regression model 
is the plane (or cube or hypercube or...) that best fits the 3D (or 4D or 5D or...) pattern of dots, 
by minimizing the residuals along the axis defined by the dependent variable. 
 Regression is just algebra, and algebra is just geometry! 
 
2.3 Residuals 
 
 As we’ve seen, the residuals tell us something about how well our model is capturing the 
real data pattern. You can compute residuals by hand by subtracting the model’s predictions 
from the actual values. For example, in Excel, you can use the regression tool to find the 
regression coefficients, and then use cell functions to add the intercept, the first independent 
variable times its coefficient, the second independent variable times its coefficient, and so on, 
for each of the observed independent variable values, and then subtracting this from the 
observed value. 
 As usual, it’s easier to show how to do this in R, which also happens to have functions for 
generating the estimated dependent variable predicted by a model (predict()) and for extracting 
the residuals from a model (resid()): 
 
fd.lm = lm(Dur ~ LogFreq + AoA + Fam, data = fd) # In case you lost this model 
Dur_hat = predict(fd.lm) # Dur values estimated by the model 
fd.resid.hand = fd$Dur - Dur_hat # Manually computed residuals 
fd.resid = resid(fd.lm) # Automatically computed residuals for this model 
head(cbind(fd.resid.hand, fd.resid)) # They're the same! 
 
 Since the regression “line” goes through the “middle” of the data points, the mean of the 
residuals has to be zero (within the limits of computer power): 
 
mean(fd.resid) # Yes, this is zero 
 
[1] -1.796861e-17 
 
 Moreover, if our factors truly describe everything we need to know about the data, the 
residuals will also be normally distributed, since they’ll just be pure noise. This implies that if 
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the residuals are not normal, then our dependent variable shows a pattern that’s not explained 
by any of the independent variables in our model, and we have more research to do. 
 In this case, the residuals of this fake data set look pretty good, since they’re dominated 
by pure noise: 
 
hist(fd.resid) # Looks normal 
qqnorm(fd.resid); qqline(fd.resid) # Yes, quite normal 
 
 To see what residuals look like if we’re missing crucial data, let’s create new fake 
durations, called DurX, this time adding a mysterious FactorX that has a lot more variance 
than our original residuals: 
 
fd$FactorX = 1:nrow(fd) # This data set is extra fake now! 
var(fd$FactorX) # The variance is of course huge 
 
[1] 237867.5 
 
fd$DurX = fd$Dur + fd$FactorX 
 
 Now we’ll build the same kind of model as before, deriving DurX from LogFreq, AoA 
and Fam, since we’re pretending that we don’t know that Factor X exists: 
 
fd.noX.lm = lm(DurX ~ LogFreq + AoA + Fam, data = fd) 
coef(fd.noX.lm) 
 

Intercept) LogFreq AoA Fam 
1210.113 -14.0455 -38.6068 17.07011 

 
 Now let’s look at the shape of the residuals for this (incomplete) model, as in Figure 6: 
 
fd.noX.resid = resid(fd.noX.lm) 
hist(fd.noX.resid) # That doesn't look normal! 
qqnorm(fd.noX.resid); qqline(fd.noX.resid) # That doesn't look normal either! 
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Figure 6. Residuals for a poorly fit model 
 
 Now somebody says, hey, have you considered including Factor X in your model? 
Excitedly you run back to your computer and give it a try (see Figure 7): 
 
fd.withX.lm = lm(DurX ~ LogFreq + AoA + Fam + FactorX, data = fd) 
fd.withX.resid = resid(fd.withX.lm) 
hist(fd.withX.resid) # Now that looks normal! 
qqnorm(fd.withX.resid); qqline(fd.withX.resid) # That looks normal too! 

 
Figure 7. Residuals for a well fit model 
 
 Even though the math behind this is basically just algebra and arithmetic, I still think this 
trick is kind of amazing. Merely by looking at what our model does not model (i.e., the 
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residuals), we can learn whether or not our model is capturing the most crucial information. It 
doesn’t tell you what your missing “Factor X” must be, but it does tell you that there must be 
something missing. Maybe it’s just one factor, maybe it’s more, or maybe it’s some sort of 
transformation of your existing variables, or maybe it’s an interaction between your existing 
variables. 
 So residuals are not just “noise”: they can provide valuable information too. 
 
2.4 The intercept 
 
 The fake data set we’ve been looking at was designed to have an intercept of 250, which 
represents a duration of 250 ms for words with zero frequency, zero familiarity, and zero age 
of acquisition. 
 Wait a minute: does that make any sense? A word with zero frequency and zero familiarity 
is not actually a word at all. But if it’s a made-up non-word, how can anybody have “acquired” 
it at the age of zero (i.e., at birth)? Well, as I mentioned earlier, maybe we can understand this 
intercept as the “default” word length; it doesn’t matter when you learn it. 
 In other situations, it makes even less sense to have a non-zero intercept. For example, 
consider the real-ish data in nativism.txt (based on analyses in Myers et al., 2011). This data 
set was collected to see how the accuracy in using a language is affected by what we might call 
“nativist” influences (AgeAcquire, i.e., when somebody was first exposed to the language) and 
by what we might call “environmental” influences (YearsUsing, i.e., how much experience 
somebody had in the language). These factors are partially confounded (we’ll come back to 
this), so maybe multiple regression can help tease apart these conceptually very distinct 
variables. 
 So we run a regression with Accuracy as the dependent measure (again, you can do most 
of the following example in Excel too): 
 
native = read.delim("nativism.txt") 
native.lm = lm(Accuracy ~ AgeAcquire + YearsUsing, data=native) 
summary(native.lm) # Includes coefficients table below 
 
Coefficients: 

 Estimate Std. Error t value Pr(>|t|)  
(Intercept) 0.689293 0.106327 6.483 1.29e-06 *** 
AgeAcquire   -0.009615 0.002882 -3.336 0.00287 ** 
YearsUsing    0.001613 0.002641 0.611 0.54740  

 
 Based on this analysis, it looks like the nativists win: there’s a significant negative effect 
of age of acquisition on accuracy (i.e., the older you start a language, the less accurate you are), 
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but no significant effect of experience (see Myers et al., 2011, for details on the real data and 
the real study that used them). 
 But look at that intercept: it’s also significant? Why? The intercept implies that a person 
who was exposed to the language at birth (AgeAcquire = 0) but had no years of experience 
(YearsUsing = 0) would already have an accuracy around 70% (0.69). But surely that’s 
impossible: this specific language isn’t innate, so you need to do some learning! 
 It would make more sense, a real-life way, if we made another assumption in the model, 
namely that the intercept must be zero, so accuracy would be zero for newborn babies. 
Mathematically, a model with an intercept is the same as multiplying the intercept coefficient 
b0 by variable that’s always equal to one: 
 
Model with an intercept:  ŷ = b0·1+ b1·x1 + b2·x2 + ... + bk·xk 
Model with no intercept:  ŷ = b0·0 + b1·x1 + b2·x2 + ... + bk·xk 
 
 So in R, if you want to remove the intercept, you “subtract” 1 in your formula (you can 
also “add” 0 in the formula notation, which symbolizes the no-intercept equation above). The 
results now are very different: both factors show a positive effect on accuracy (very odd for 
AgeAcquire: the later you start learning, the more accurate you are??): 
 
native.lm.noint = lm(Accuracy~AgeAcquire+YearsUsing-1,data=native) 
native.lm.noint0 = lm(Accuracy~0+AgeAcquire+YearsUsing,data=native) 
summary(native.lm.noint) 
summary(native.lm.noint0) # Both give the same results 
 
Coefficients: 

 Estimate Std. Error t value Pr(>|t|)  
AgeAcquire   0.006142 0.002549 2.409 0.024 * 
YearsUsing    0.017457 0.001648 10.592 1.58e-10 *** 

 
 Note that without the intercept, both independent variables are now significant! In fact, 
YearsUsing has a much lower p value (though remember that p values are not the same as 
effect size; we’ll come back to this issue shortly). Moreover, the effect of AgeAcquire is now 
positive: accuracy is higher for people who acquire the language later (which seems quite 
counterintuitive, even on a non-nativist account). 
 Changes in statistical results due to changes in model assumptions are common when 
analyzing real data, especially in regression models, where the independent variables and other 
aspects of the model are not fixed ahead of time (e.g., by an experimental design), but can be 
modified “freely” (e.g., adding Factor X only after you realize that his variable even exists). In 
this particular case, we will soon show that the with-intercept model is statistically “better”, 
but a skeptical reader of your report may still be right to argue that the no-intercept model 
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makes more sense in the “real world” (though the counterintuitive AgeAcquire effect in the 
no-intercept model is an argument against this). 
 We’ll come back to this problem of model selection shortly, but don’t expect me to tell 
you what’s the 100% right thing to do in every situation. As Johnson (2008) observes, statistical 
modeling is not a pure science, but partly an “art” too, subject to social conventions and human 
intuitions and rhetorical argumentation, not just mathematics. 
 In any case, you should treat the above mainly as mathematical practice. I don’t 
recommend testing no-intercept models in real life, even if it seems more realistic. Even at the 
level of rhetoric, it will make your readers suspicious that you’re trying to hide something by 
distorting the data in some way. The intercept may not have great theoretical importance in 
most situations, but it does tell you something about the “default” value of the dependent 
variable. This information is particularly useful in non-parametric regression, like logistic 
regression (see next chapter). 
 
2.5 Standardized coefficients 
 
 I just reminded you that a difference in p values does not tell you anything about the 
relative size of two effects. We already know one way to estimate the effect size of a whole 
multiple regression model (with R2), but how do we do this for individual variables? For 
example, how do we compare AgeAcquire and YearsUsing in the with-intercept model of 
nativism.txt? 
 You might think there’s no problem here, since in this model, AgeAcquire is significant 
but YearsUsing is not. But we cannot rely on the difference in the p values, because these just 
reflect how “confident” we should be about the coefficients (in that weird backwards sense of 
“confidence intervals” in traditional, non-Bayesian statistics). But that’s not the same as effect 
size. As you know, the p values in multiple regression, actually come from one-sample t tests, 
where t is calculated using the formula below for each parameter of the model: 
 

t values in regression: 𝑡𝑡 = 𝑏𝑏
𝑆𝑆𝑆𝑆

 

 
 The p values are then computed from this, for the null hypothesis that the coefficient is 
zero (no effect), with df = n - 2. As usual, the standard error (SE) is the trickiest part to compute, 
but in essence it’s just a generalization of what we’ve already seen with the one-sample t test, 
except that it uses matrix arithmetic since instead of a single sample (vector), we’re dealing 
with a “rectangle” of numbers (i.e., the multiple vectors for the independent variables x0, x1, 
x2, ..., xk, where x0 = 1 if there’s an intercept and x0 = 0 if there isn’t). 
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 Since the coefficients represent slopes, and slopes show how much the dependent variable 
changes as a function of the independent variables, we should actually compute the effect sizes 
from the coefficients, not the p values. But we can’t do this directly. For example, the 
coefficient for AgeAcquire seems to be further from zero (-0.0096) than that for YearsUsing 
(0.0016), but this comparison doesn’t mean anything without knowing how intrinsically 
variable each of these predictors is. 
 Ah! This reminds me of something.... It’s kind of like the concept of covariance, which 
depends not just how correlated two variables are, but also on the variance of each of these 
variables. In order to put the correlation measurement on a universal scale, we computed 
Pearson’s correlation coefficient r by taking the standard deviations of these variables into 
account. 
 In a similar way, to put any independent variable in a multiple regression on the same 
universal scale, we have to calculate its standardized regression coefficient, which can be 
done simply by dividing by the standard deviation of the dependent variable and multiplying 
by the standard deviation of our original coefficient, as shown below. Since this value is now 
on a universal scale, we express its special status by replacing the roman letter b with the Greek 
letter beta (β): 
 

𝛽𝛽𝑖𝑖 = 𝑏𝑏𝑖𝑖 �
𝑠𝑠𝑥𝑥𝑖𝑖
𝑠𝑠𝑦𝑦
�, where βi is the standardized coefficient for independent variable xi 

 
 Let’s do this for the original with-intercept nativism model, to compare the standardized 
coefficients for AgeAcquire and YearsUsing: 
 
 
AgeAcquire_b = coef(native.lm)["AgeAcquire"] # Same trick used earlier 
YearsUsing_b = coef(native.lm)["YearsUsing"] 
AgeAcquire_beta = AgeAcquire_b*(sd(native$AgeAcquire)/sd(native$Accuracy)) 
YearsUsing_beta = YearsUsing_b*(sd(native$YearsUsing)/sd(native$Accuracy)) 
AgeAcquire_beta; YearsUsing_beta 
 
AgeAcquire  
-0.6492881  
YearsUsing  
 0.1188537 
 
 So it seems that in this model, the magnitude of the effect of AgeAcquire is over five 
times greater that of YearsUsing (0.6492881/0.1188537 > 5); the difference in statistical 
significance is also associated with a pretty large real-world difference. 
 APA style recommends that both types of coefficients should be reported (B and β), 
because the raw coefficients and the standardized coefficients give different kinds of useful 
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information: actual slopes in the scatter plot vs. universally comparable effect sizes. Note that 
when reporting coefficients that happen to fall in the range -1 to +1, you should still include 
that “0.” at the start, rather than dropping them off, because unlike p and r, coefficients aren’t 
bound by -1 and +1, but can be any number between -∞ and +∞. 
 There’s actually a much easier way to compute these standardized beta coefficients (it 
only works for regression models that include intercepts, another reason to use them). Namely, 
just convert all of your variables, both dependent and independent, into z scores ahead of time, 
before creating the regression model (Aiken & West, 1991). Not only will doing this cause the 
regression analysis to output standardized coefficients, but it has two other advantages that 
we’ll discuss in detail later: it makes interactions easier to interpret (see later in this chapter), 
and for non-parametric regression (like logistic regression), it helps the computer algorithm 
find the best analysis (see next chapter). 
 Let’s see how this works with our with-intercept nativism model. Just to refresh your 
memory, here’s what we got when we analyzed the raw variables: 
 
native.lm = lm(Accuracy ~ AgeAcquire + YearsUsing, data=native) 
summary(native.lm) # Includes coefficients table below 
 
Coefficients: 

 Estimate Std. Error t value Pr(>|t|)  
(Intercept) 0.689293 0.106327 6.483 1.29e-06 *** 
AgeAcquire   -0.009615 0.002882 -3.336 0.00287 ** 
YearsUsing    0.001613 0.002641 0.611 0.54740  

 
 To compute the standardized coefficients, we first use scale() to compute z scores for all 
of our variables, and then we just run the regression analysis on the z scores: 
native$Accuracy.z = scale(native$Accuracy) 
native$AgeAcquire.z = scale(native$AgeAcquire) 
native$YearsUsing.z = scale(native$YearsUsing) 
native.lm.z = lm(Accuracy.z ~ AgeAcquire.z + YearsUsing.z, data=native) 
summary(native.lm.z) # Includes coefficients table below 
 
Coefficients: 

 Estimate Std. Error t value Pr(>|t|)  
(Intercept) -2.32E-16 1.38E-01 0 1  

AgeAcquire.z -6.49E-01 1.95E-01 -3.336 0.00287 ** 
YearsUsing.z 1.19E-01 1.95E-01 0.611 0.5474  

 
 As you can see (despite R’s confusing use of scientific notation here), the coefficients for 
the two independent variables have been changed into the standardized beta coefficients that 
we calculated earlier by hand: 
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AgeAcquire_beta; YearsUsing_beta 
 
AgeAcquire  
-0.6492881  
YearsUsing  
 0.1188537 
 
 Notice also that the t and p values for the two independent variables are exactly the same 
as before, but their coefficients have changed. Their SE values have become identical, showing 
that they’ve been put on the same “variability” scale so we can compare the coefficient sizes 
directly. Moreover, the intercept has disappeared, turning into zero (obviously not significant), 
because of course the mean (“default value”) of any set of z scores must be zero (which is why 
this trick doesn’t work for no-intercept models). 
 
2.6 Plotting multiple regressions 
 
 We plotted simple regressions many chapters ago, but how do we do it if there are multiple 
predictors? 3D graphs like we used just to clarify the math aren’t practical for real life. Also, 
if we can add error bars in a bar or line plot, how do we do something similar when plotting a 
regression model? 
 Fortunately, R makes doing all of this relatively easy. Regarding the problem of how to 
plot multiple predictors, the solution is simple: use different graphs, one per predictor. We 
could do this based on the raw data, but then our plots would be somewhat misleading, since 
then each plot would be based on a separate simple regression, rather than showing an aspect 
of the full multiple regression. 
 The simplest way to plot the effect of each predictor is to use the effects package. All we 
have to do is create our regression model, and then generate all effects using the allEffects() 
function, and then plotting the output of this function (we can do this in one step, but we’ll 
need the effects object again shortly). This creates an effects plot, as we saw in the ANOVA 
chapter, which represent the effect of each independent variable on the dependent variable, 
with the effect of the other variable(s) taken into account. Here’s how it works with the native 
data: 
 
native = read.delim("nativism.txt") # Reload to start fresh 
native.lm = lm(Accuracy ~ AgeAcquire + YearsUsing, data=native) # Just to be safe 
library(effects) # Only need to load it once per session 
native.eff = allEffects(native.lm) 
plot(native.eff) # Creates Figure 8 
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Figure 8. Effects plot for nativism data 
 
 What does it mean to “take the other variable(s) into account”? It means that when plotting 
one of the variables (e.g., AgeAcquire), the values of the other variable (YearsUsing) are kept 
constant so they have no effect. To get a sense of how this works, let’s look inside the native.eff 
object, turning it into a data frame to make it easier to read. 
 
native.eff = as.data.frame(native.eff) 
native.eff 
 
$AgeAcquire     

 AgeAcquire fit se lower upper 
1 0 0.731849 0.04948 0.62949 0.83421 
2 10 0.635704 0.02961 0.57445 0.69696 
3 30 0.443412 0.05212 0.33559 0.55124 
4 40 0.347266 0.07829 0.18532 0.50921 
5 60 0.154975 0.13392 -0.1221 0.43202 
      

$YearsUsing     
 YearsUsing fit se lower upper 

1 2 0.553477 0.06971 0.40927 0.69768 
2 20 0.58251 0.03156 0.51723 0.64779 
3 30 0.598639 0.02833 0.54003 0.65725 
4 40 0.614768 0.04477 0.52215 0.70739 
5 60 0.647027 0.09271 0.45525 0.8388 
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 Looking just at the part for AgeAcquire, for example, we see that the actual values of this 
variable have been replaced with the minimum and maximum and a few values in between, 
and these are associated with fitted values (i.e., predicted values for Accuracy). To see what 
line is being drawn by these lines, let’s do something weird: run a linear regression on this 
output of a linear regression: 
 
aa = native.eff$AgeAcquire # Just the AgeAcquire table above 
lm(fit~AgeAcquire,data=aa) # fit = y values predicted for this x given the other x's 
 
Call: 
lm(formula = fit ~ AgeAcquire, data = aa) 
 
Coefficients:  
 (Intercept) AgeAcquire 
 0.731849 -0.009615 

 
 Now look at the value for the AgeAcquire coefficient: it’s exactly the same as for the 
full regression model: 
 
native.lm 
 
Call: 
lm(formula = Accuracy ~ AgeAcquire + YearsUsing, data = native) 
 
Coefficients:   
 (Intercept) AgeAcquire YearsUsing 
 0.689293 -0.009615 0.001613 

 
 But it’s not the same as what we get if AgeAcquire is the only predictor: 
 
lm(Accuracy ~ AgeAcquire, data = native) 
 
Call: 
lm(formula = Accuracy ~ AgeAcquire, data = native) 
 
Coefficients:  
 (Intercept) AgeAcquire 
 0.74938 -0.01083 

 
 You’ve probably noticed another important thing about the effects plot: each line has a 
shaded band all the way across it. This is the regression equivalent of an error bar, but since 
it’s a band, it’s called an error band. In this case, the error band is a 95% confidence band 
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(like a 95% confidence interval). You can see where the plot gets its values from if you look at 
the “lower” and “upper” columns in the native.eff tables. 
 Why does this band curve, instead of being constant across the whole plot? After all, the 
regression line itself is straight. The short answer is that our confidence isn’t constant across 
the whole range either, but rather is sharpest in the middle, where we have more neighboring 
data to help. At the extremes, the band is wider because we run out of data. Another way to 
think about it is that the band is the “shadow” cast by an infinite number of possible regression 
lines that fit the mean x and y values but otherwise can take a variety of possible slopes, like a 
Taiwanese student playing that “bored in class” pen spinning game. 
 If you don’t like how the effects package automatically plots things, you can take its 
allEffects object and plot it yourself. For example, here’s how we could plot the AgeAcquire 
effect in ggplot2 (chosen because it has a built-in tool for drawing error bands), using pretty 
basic (i.e., ugly) defaults, giving us Figure 9: 
 
library(ggplot2) # Only need to load it once per session 
# With detailed comments 
ggplot(data = native.eff$AgeAcquire, # data frame generated by allEffects() 
  mapping = aes(x = AgeAcquire, y = fit)) + # says what's on the x and y axes 
  geom_line() + # adds the line: put stuff in here to change thickness, color, etc 
  geom_ribbon(mapping = aes(ymin = lower, ymax=upper), # error band 
  alpha = .2) + # degree of transparency of the band (0 = clear, 1 = totally dark) 
  labs(y = "Accuracy") # Replaces "fit" 
# Same thing again, without comments 
ggplot(data = native.eff$AgeAcquire, mapping = aes(x = AgeAcquire, y = fit)) + 
  geom_line() + geom_ribbon(mapping = aes(ymin = lower, ymax=upper), 
  alpha = .2) + labs(y = "Accuracy") 
 
 

 
Figure 9. Ugly plot of the effect of AgeAquire on Acceptability with YearsUsing factored out 
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3. Regression is everywhere 
 
 I know I keep saying this, but it’s really true. In this section I show how one-way 
independent-measures ANOVA, two-way independent-measures ANOVA, and repeated-
measures ANOVA are all actually special cases of regression. Knowing this will not only 
ground your statistical skills in (hopefully) intuitive math, but also help you to get the most 
power out of both Excel and R when analyzing your data. In particular, any data that you can 
analyze with ANOVA you could also analyze with regression, in a more flexible way, and 
doing so might tell you a lot more than a plain old ANOVA would. There’s also a benefit to 
those of you who prefer Excel to R: since Excel can run multiple regression, it is theoretically 
possible (though not very practical) to run any kind of ANOVA in Excel using the regression 
tool, far beyond Excel’s three built-in kinds. 
 
3.1 ANOVA as regression 
 
 We’ve already had lots of clues that ANOVA and regression are related. After all, Excel’s 
regression tool gives you an ANOVA table, and R lets you run ANOVA by using the syntax 
anova(lm(...)), i.e., doing a linear regression in an ANOVA-style (sequential) way. 
 But if regression is for independent variables that are numeric, how can it analyze 
independent variables that are categorical factors? We’ve actually mentioned the key ideas in 
earlier chapters. First, the levels of a categorical factor actually represent numbers, like the 
numerical coding we used to imitate the homoscedastic unpaired t test using simple regression 
in the t test chapter (point-biserial correlation). Second, interactions are literally multiplications 
of these numbers. 
 Let’s start with a one-way independent-samples ANOVA (saving interactions for the next 
section). Say the one factor we’re testing has three levels. We can’t code the levels as 1, 2, 3, 
since then we would be falsely implying that the levels have a specific order and with specific 
differences (e.g., that category 2 is exactly the same distance from category 1 and category 3). 
 Instead, we split up the three-level factor into two factors, where one just indicates whether 
a data point reflects some level, and the other indicates whether a data point reflects some other 
level; the remaining level is then treated as the default reference level. For example, for factor 
F with three levels A, B, C, where A is the reference level, we replace F with two new variables 
FB = 1 only if F = B, and FC = 1 only if F = C. 
 In dummy coding (or treatment coding) the alternative value is always 0. As shown in 
Table 2, F=B is coded as FB=1 & FC=0, F=C is coded as FB=0 & FC=1, and the default F=A 
is coded as FB=0 and FC=0. Effect coding (or sum coding) has no default reference level, but 
instead recodes the levels in terms of two generic variables (called FX and FY in Table 2) that 
differ in 0 and 1 values, except for one level where both variables are coded as -1. This has the 
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effect that each of these generic variables sum up to 0 (hence “sum coding”), so that the effects 
of the independent variable are compared against a more intuitive baseline, namely zero (hence 
“effect coding”). 
 
Table 2. Two ways to turn a three-level factor into two numerical variables 
 

Original factor Dummy coding Effect coding 
F FB FC FX FY 
A 0 0 1 0 
B 1 0 0 1 
C 0 1 -1 -1 

 
 Both types of coding can be useful. Dummy coding allows us to compare the default 
reference level with the other levels, which makes it possible (as we’ll see) to avoid post-hoc 
tests. Effect coding allows us to compare each level with the grand mean of the dependent 
variable, and it’s also very useful when modeling interactions (the topic of the next section). 
 If you want, you can recode your factors by hand (e.g., if you’re doing this in Excel), but 
R has built-in functions that preserve the factors as factor objects, while just changing their 
internal numerical coding, which is useful when using functions that do special things for 
factors (like the plotting functions in the effects package). 
 Let’s try both methods, looking at the first colored room experiment from the first 
ANOVA chapter, treating Blue as the reference level. First we have to recreate the fake data 
(though this time I made sure to create Color as a factor, not just a character vector): 
 
exp1 = data.frame(Color = as.factor(c(rep("Red",5), rep("Blue",5), rep("Yellow",5))), 
 Learning=c(c(0,1,3,1,0),c(4,3,6,3,4),c(1,2,2,0,0))) # To keep track of the 3 samples 
 
head(exp1) # See what it looks like 
 
 Color Learning 

1 Red 0 
2 Red 1 
3 Red 3 
4 Red 1 
5 Red 0 
6 Blue 4 

 
 Here are some clever R commands for creating numerical variables that implement 
dummy coding and effect coding, exploiting the fact that you can convert logical variables into 
numbers with 0 = FALSE and 1 = TRUE by using simple arithmetic: 
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exp1$ColorRed.d = 1*(exp1$Color=="Red") # "d" for "dummy coding" 
exp1$ColorYellow.d = 1*(exp1$Color=="Yellow") 
exp1$ColorRed.e = exp1$ColorRed.d - 1*(exp1$Color=="Blue") # "e" for "effect" 
exp1$ColorYellow.e = exp1$ColorYellow.d - 1*(exp1$Color=="Blue") 
 
head(exp1) # See what it looks like now 
 
 Color Learning ColorRed.d ColorYellow.d ColorRed.e ColorYellow.e 

1 Red 0 1 0 1 0 

2 Red 1 1 0 1 0 

3 Red 3 1 0 1 0 

4 Red 1 1 0 1 0 

5 Red 0 1 0 1 0 

6 Blue 4 0 0 -1 -1 
 
 But you don’t have to do this by hand. By default, R codes factors using dummy (treatment) 
coding, with the default reference level being the level whose name appears alphabetically first 
(here, “Blue”, which is alphabetically before “Red” and “Yellow”). You can see that this is 
how R codes factors by using the contrasts() function: 
 
contrasts(exp1$Color) # This function only works if Color is a factor, which it is 
 

 Red Yellow 
Blue 0 0 
Red 1 0 

Yellow 0 1 
 
 What if you wanted to make Yellow the reference level instead of Blue? Then you can 
use the relevel() function. Let’s create a new variable for this job: 
 
exp1$Color.y = relevel(exp1$Color,"Yellow") 
contrasts(exp1$Color.y) 
 

 Blue Red 

Yellow 0 0 

Blue 1 0 

Red 0 1 

 
 Going back to the original Color factor, let’s now change its internal coding so that it uses 
effect coding (which R calls sum coding), using the contr.sum() function, applied to the levels 
of the factor, extracted using the levels() function, and then assign this value to the contrasts() 
of the factor. (To change the factor back to dummy coding, you can use the contr.treatment() 
function.) 
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exp1$Color.e = exp1$Color # Initiate new factor coding ("e" for "effect coding") 
contrasts(exp1$Color.e) = contr.sum(levels(exp1$Color)) 
# contrasts(exp1$Color.e) = contr.sum(3) # also works, since there are 3 levels here 
contrasts(exp1$Color.e) 
 

 [,1] [,2] 
Blue 1 0 

Red 0 1 

Yellow -1 -1 

 
 Notice that the column variables have no names. This is because in effect coding, none of 
the levels is the default reference level; instead, the regression results will compare the effects 
of each of the two new variables against the grand mean of the dependent variable. 
 Now we have two statistical methods (ANOVA and regression) and for the regression, 
three different codings of the factor Color (R’s default dummy coding with “Blue” as reference 
level, dummy coding with “Yellow” as reference level, and effect coding). Let’s try these four 
analyses one at a time to see how the results differ. 
 First we repeat the ordinary ANOVA, using the aov() function: 
 
summary(aov(Learning ~ Color, data = exp1)) # Includes the ANOVA table below 
 
 Df Sum Sq Mean Sq F value Pr(>F)  
Color 2 30 15.000 11.25 0.00177 ** 
Residuals 12 16 1.333    
 
 Now let’s do a regression on the original Color factor (with R’s default dummy coding, 
with Blue as reference level): 
 
summary(lm(Learning ~ Color, data = exp1)) # Includes the regression table below 
 
Coefficients: 
 Estimate Std. Error t value Pr(>|t|)  
(Intercept) 4.0000 0.5164 7.746 5.22e-06 *** 
ColorRed -3.0000 0.7303 -4.108 0.00145 ** 
ColorYellow -3.0000 0.7303 -4.108 0.00145 ** 
 
 Notice that the Color factor has been split up into two numerical factors called ColorRed 
(comparing the Red level with the reference Blue level) and ColorYellow (similarly). The 
estimated coefficients should look familiar: they are the differences in the means between Blue 
(M = 4) and Red (M = 1) and Yellow (M = 1): 
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tapply(exp1$Learning, list(exp1$Color), mean) 
 

Blue Red Yellow 
4 1 1 

 
 The p values show us the comparisons of the Red and Yellow levels with the Blue baseline. 
Thus even though this analysis doesn’t tell us if Color is significant overall, we do learn that 
Blue is significantly different from Red and Yellow, and we learn this in a single model that 
does not increase the risk of Type I errors (the way repeated unpaired t tests would), without 
the need for any post-hoc tests. 
 If you want to use regression to get an overall Color p value, you can just put our lm() 
model into the anova() function instead of the summary() function: 
 
anova(lm(Learning ~ Color, data = exp1)) 
 
Analysis of Variance Table 
 
Response: Learning 
 Df Sum Sq Mean Sq F value Pr(>F)  
Color 2 30 15.0000 11.25 0.001771 ** 
Residuals 12 16 1.3333    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 
 
 A quick caveat: As we saw in the previous chapter, however, ANOVA not only cares 
about order, but it also cares about the sample sizes in each cell. Thus ANOVA and a regression 
analysis may give different results if the sample sizes differ, or if you reorder the variables. But 
my general point still stands: ANOVA is a special case of regression. 
 Let’s now do a regression analysis with dummy-coded Color using Yellow as the 
reference level: 
 
summary(lm(Learning ~ Color.y, data = exp1)) # Includes the regression table below 
 
Coefficients: 
 Estimate Std. Error t value Pr(>|t|)  
(Intercept) 1.00E+00 5.16E-01 1.936 0.07671 . 
ColoryBlue 3.00E+00 7.30E-01 4.108 0.00145 ** 

ColoryRed -2.81E-16 7.30E-01 0.000 1.00000  

 
 Now we see that the Blue level is significantly different from Yellow, but Red is not 
significantly different from Yellow (remember that their means are exactly the same, so the 
coefficient for ColoryRed is actually zero). 
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 Finally, let’s do the regression using effect coding: 
 
summary(lm(Learning ~ Color.e, data = exp1)) # Includes the regression table below 
 
Coefficients: 
 Estimate Std. Error t value Pr(>|t|)  
(Intercept) 2 0.2981 6.708 2.17E-05 *** 

Color.e1 2 0.4216 4.743 0.000477 *** 

Color.e2 -1 0.4216 -2.372 0.035292 * 

 
 I have to admit that this result is pretty hard to understand in real-world terms, though it 
still makes sense mathematically. The intercept coefficient is the overall mean (try it: 
mean(c(4,1,1))), and the other two coefficients are differences compared with this overall 
mean. So it seems that dummy coding makes more practical sense when testing a multi-level 
factor. 
 To summarize the above arguments, try testing just two colors (since t tests are a special 
case of ANOVA), and look at the p values. If you do it right, the ANOVA p value and the 
independent variable regression p values should all be .00283. 
 
exp1.nored = subset(exp1, exp1$Color != "Red") # Ignore Red 
summary(aov(Learning ~ Color, data = exp1.nored)) 
summary(lm(Learning ~ Color, data = exp1.nored)) 
summary(lm(Learning ~ Color.y, data = exp1.nored)) 
summary(lm(Learning ~ Color.e, data = exp1.nored)) 
 
 For more (much much much more) on releveling, effect coding, and related issues in 
regression, see Schad et al. (2020). One thing not mentioned in this paper is that if your 
regression includes multi-level factors, you can still use the emmeans() function in the 
emmeans package (introduced in the ANOVA chapters) to compare them (try it!): 
 
library(emmeans) # You only need to load this once per session 
emmeans(lm(Learning ~ Color, data = exp1), list(pairwise~Color), adjust="tukey") 
 
 A final point to end this long section: seeing the relationship between ANOVA and 
regression also allows us to run something called ANCOVA: analysis of covariance (共變數

分析). An ANCOVA is most often used as a tool for factoring out extraneous (“nuisance”) 
continuous variables, so the categorical factors stand out more clearly. That is, the model is 
like so, where F and G are the theoretically interesting factors and H is a continuous nuisance 
variable, as in the following schematic R example, or the equivalent in Excel: 
 
lm(Dependent ~ F * G + H, ...) 
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 R’s function aov() can also do this, since it works even if one or more of the fixed (or 
even random) variables is a numerical vector rather than a factor. 
 
3.2 Interactions in regression 
 
 In the ANOVA chapters I mentioned that it’s no coincidence that the interaction symbol 
is × (when writing a report) and * (when running it in R). These symbols imply that 
multiplication is involved somehow, and that’s literally true: if you want to test for an 
interaction between variable F and G in a multiple regression analysis, all you have to do is 
include F×G (or F*G) as a third variable. 
 In fancier mathematical terms, if the two independent variables x1 and x2 interact, we 
should find a significant role for their product x1x2, in an equation like the following: 
 
y = b0 + b1x1 + b2x2 + b3x1x2 
 
 Let’s explore this idea in two steps. First, we’ll see the relationship between ANOVA 
interactions and multiplied variables in regression, and then we’ll discuss regression 
interactions more generally, including the tricky issue of how to plot them. 
 
3.2.1 Doing two-way independent measures ANOVA using regression 
 
 Let’s start by redoing the second colored room experiment, the one that tested for an 
interaction between gender and room color, but just use two colors to avoid the coding 
complexity that arises with multi-level factors (you can try analyzing the full data set yourself, 
just to see what happens). 
 First we recreate the fake data: 
 
exp2 = data.frame(Gender = c(rep("Female",15),rep("Male",15)),  # F+M 
 Color = rep(c(rep("Red",5), rep("Blue",5), rep("Yellow",5)),2),  # RBY+RBY 
 Learning=c(c(3,1,1,6,4), c(2,5,9,7,7), c(9,9,13,6,8),  # F: RBY 
           c(0,2,0,0,3), c(3,8,3,3,3), c(0,0,0,5,0)))   # M: RBY 
 
exp2$Gender = as.factor(exp2$Gender) # It's safest to do this job early... 
exp2$Color = as.factor(exp2$Color) 
 
head(exp2) # See what it looks like 
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 Gender Color Learning 
1 Female Red 3 
2 Female Red 1 
3 Female Red 1 
4 Female Red 6 
5 Female Red 4 
6 Female Blue 2 

 
 Then we throw out Red to make Color a binary variable: 
 
exp2.nored = subset(exp2, exp2$Color !="Red") # Just compare Blue vs. Yellow 
 
 Here’s what we get when we run the two-way ANOVA: 
 
summary(aov(Learning ~ Gender * Color, data=exp2.nored)) 
 
 Df Sum Sq Mean Sq F value Pr(>F)  

Gender 1 125 125 21.28 0.000288 *** 
Color 1 0 0 0 1  

Gender:Color 1 45 45 7.66 0.013728 * 
Residuals 16 94 5.87    

 
 As a review, what happens when you run the following? Why is it the same as the above? 
 
summary(aov(Learning ~ Gender + Color + Gender:Color, data=exp2.nored)) 
 
 OK, now let’s turn Color into numbers by hand, to make the multiplication in the 
interaction more transparent. I’m going to use effect coding, since this is the kind we need to 
use to make the interaction come out the same way as with the ANOVA (which tests effects 
against the grand mean): 
 
exp2.nored$Color.e = (exp2.nored$Color=="Yellow")*2-1 # "e" for "effect coding" 
exp2.nored$Gender.e = (exp2.nored$Gender=="Male")*2-1 # Ditto 
head(exp2.nored) # Take a look at the new coding 
 
 Gender Color Learning Color.e Gender.e 

6 Female Blue 2 -1 -1 
7 Female Blue 5 -1 -1 
8 Female Blue 9 -1 -1 
9 Female Blue 7 -1 -1 

10 Female Blue 7 -1 -1 
11 Female Yellow 9 1 -1 
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 Now we’ll create a new variable that is literally the product of Color.e times Gender.e: 
 
exp2.nored$ColorGender.e = exp2.nored$Color.e * exp2.nored$Gender.e # * = multiply 
head(exp2.nored) # Take a look at the new variable 
 
 Gender Color Learning Color.e Gender.e ColorGender.e 

6 Female Blue 2 -1 -1 1 
7 Female Blue 5 -1 -1 1 
8 Female Blue 9 -1 -1 1 
9 Female Blue 7 -1 -1 1 

10 Female Blue 7 -1 -1 1 
11 Female Yellow 9 1 -1 -1 

 
 As you can see, when Color.e and Gender.e are the same (both +1 or both -1), multiplying 
them gives you +1, but if they are different, you get -1. This is why you need to use effect 
coding to do this trick. With dummy coding, most of the time the product would be 0 (0 * 0 = 
1 * 0 = 0 * 1 = 0). With effect coding, the sign of the interaction factor says whether the two 
component factors agree or not. 
 Because of the experiment’s factorial design, and the equal sizes of all of the cells, all 
three variables are totally uncorrelated. This is shown by the following matrix of Pearson’s 
correlation coefficients (r values). This is why ANOVA can get away with partialing the factors 
out sequentially, without having to worry about possible confounds between variables (and 
why you should worry, a little, when running an ANOVA on data with different-sized cells): 
 
cor(exp2.nored[,4:6]) # Columns 4, 5, 6 are Color.e, Gender.e, ColorGender.e 
 
 Color.e Gender.e ColorGender.e 
Color.e 1 0 0 
Gender.e 0 1 0 
ColorGender.e 0 0 1 
 
cor(exp2.nored[-nrow(exp2.nored),4:6]) # Some correlation if there's missing data 
 
 Color.e Gender.e ColorGender.e 
Color.e 1.00000000 -0.05555556 -0.05555556 
Gender.e -0.05555556 1.00000000 -0.05555556 
ColorGender.e -0.05555556 -0.05555556 1.00000000 
 
 Now let’s run this as a regression, using all three variables: 
 
summary(lm(Learning ~ Gender.e + Color.e + ColorGender.e, data = exp2.nored)) 
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Coefficients: 
 Estimate Std. Error t value Pr(>|t|)  

(Intercept) 5.00E+00 5.42E-01 9.225 8.33E-08 *** 

Gender.e -2.50E+00 5.42E-01 -4.613 0.000288 *** 

Color.e -3.97E-16 5.42E-01 0.000 1.000000  

ColorGender.e -1.50E+00 5.42E-01 -2.768 0.013728 * 

 
 Maybe it’s hard to see because of R’s annoying use of scientific notation here, but the p 
values for the two main effects and for the interaction are exactly the same as what we got with 
the two-way ANOVA earlier (go back and check yourself!). 
 Another way to show that interactions are literally multiplications is to compare the 
following two analyses, where the first uses the identity I() function to force R to treat the * 
symbol as ordinary multiplication and the second uses R-created effect coding for Color and 
Gender. Try them all and confirm that they’re the same! (Note that this only works if you do 
not rescale the variables using z scores to get standardized beta coefficients: ANOVA isn’t 
equivalent to that!) 
 
# Literal multiplication 
summary(lm(Learning ~ Gender.e + Color.e + I(Gender.e * Color.e), data = exp2.nored)) 
 
# Formula syntax on effect-coded factors 
exp2.nored$Color.er = exp2.nored$Color 
contrasts(exp2.nored$Color.er) = contr.sum(levels(exp2.nored$Color.er)) 
exp2.nored$Gender.er = exp2.nored$Gender 
contrasts(exp2.nored$Gender.er) = contr.sum(levels(exp2.nored$Gender.er)) 
summary(lm(Learning ~ Gender.e * Color.e, data = exp2.nored)) 
 
 By the way, if you hand-code the effect coding, you can do most of the above in Excel 
too. So if you want to run a three-way independent-measures ANOVA, but, for some reason, 
insist on using Excel, you can do it! Instead of using Excel’s three built-in ANOVA tools, just 
use its built-in regression tool. 
 
3.2.2 Regression interactions more generally 
 
 Now that we know that we can test interactions in regressions, let’s go beyond categorical 
independent variables and see what happens! 
 Continuous variables are often a lot more realistic than categorical variables. For example, 
it seems reasonable to hypothesize that processing speeds will be affected both by word 
frequency (more common = faster) and by word length (longer = slower). We could force both 
of these naturally continuous variables into binary factors by splitting each continuum in half: 
word frequency below the median = -1, above the median = +1, and likewise for word length. 
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But not only would this would throw out a lot of information, but it would also miss the fact 
that in real lexicons the two factors are correlated: common words tend to be shorter. So it may 
be better to run a multiple regression analysis. But what happens if we also include an 
interaction to see if the continuous factors influence each other? 
 Even without testing interactions, the partial correlations between variables in a multiple 
regression can influence each other in surprising ways that only make sense if you study the 
data carefully. We already suffered from this problem with the freqdur.txt case, but here’s a 
more abstract example that may help give you clearer intuitions for how this can happen 
(simplified from Crawley, 2007, pp. 314ff, and Gries, 2013, pp. 5-6). 
 First we create some fake data with three variables: 
 
x1=c(1,2,3,4,5,6,7,8,9); x2=c(0,0,0,4,4,4,7,7,7); y=c(3,2,1,6,5,4,9,8,7) 
 It looks like there’s a positive correlation between x1 and y: 
 
plot(x1,y) # Try it yourself! 
summary(lm(y~x1)) # Indeed, the coefficient for x1 is positive 
 
 But when we add x2, the x1 coefficient turns negative! 
 
summary(lm(y~x1+x2)) # Try it yourself! 
 
 That’s partly because there’s actually an interaction between x1 and x2: 
 
summary(lm(y~x1*x2)) # Try it yourself! 
 
 We can get a sense of this interaction with a plot: 
 
lines(predict(lm(y~x1*x2))) # Three falling trend lines for the (x1,y) correlation 
 
 Moreover, x1 and x2 are highly correlated with each other: 
 
cor.test(x1,x2) # r(7) = .95, p < .0001 
 
 Another way to see why x1 has a negative effect on y in the full model is to play with the 
associated 3D scatter plot. Rotate the cube as we did before to see the correlations associated 
with y ~ x1, y ~ x2, and x1 ~ x2: 
 
library(rgl) 
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plot3d(x=x1,y=x2,z=y) 
coefs = coef(lm(y~x1*x2)) 
a = coefs["x1"]; b = coefs["x2"]; c = -1; d = coefs["(Intercept)"] 
planes3d(a, b, c, d, alpha=0.5) 
 
 As the full model and plots show, the correlation between y and x1 is truly negative; the 
rising aspect of the original 2D scatter plot is actually caused by the positive correlation 
between y and x2. This switch from positive to negative sign for x1 can only happen because 
x1 and x2 are correlated, which is impossible in a factorial experiment, but is not uncommon 
when working with numerical variables in a multiple regression. 
 As this example also shows, however, that if there is truly an interaction implicit in your 
data, you should try to find it, despite the confusions it may cause. Indeed, just as with ANOVA, 
sometimes the interaction is the theoretically most important part of your analysis. 
 For example, the data in NBUP.txt (collected and analyzed for Myers, 2015) show mean 
acceptability judgment responses for thousands of fake Mandarin syllables, along with 
information on lexical typicality (NB = number of lexical neighbors differing in only one 
phoneme from the test item) and universality (UP = number of languages containing the test 
item’s onset consonant in the cross-linguistic UPSID database; Maddieson, 1984). One of the 
research questions concerned a potential interaction: does the universality (UP) of a pattern 
affect how people treat the language-specific properties (NB) of that pattern? 
 These two factors are not correlated, and if we ignore the interaction, both have a positive 
effect on acceptability, as one might expect. When we include the interaction, we find that it is 
significant and the model fits better (larger R2), but now the effect of UP becomes negative and 
non-significant (try it!): 
 
syl = read.delim("NBUP.txt") 
cor.test(syl$NB,syl$UP) # r(3185) = -.03, p = .09 
syl.noint = lm(MeanResp ~ NB + UP, data=syl) # Don't test interaction: Adj R2 = .293 
summary(syl.noint) # Both have significant positive effects 
syl.int = lm(MeanResp ~ NB * UP, data=syl) # Include interaction: Adj R2 = .303 
summary(syl.int) # UP loses its significant effect 
 
 To understand the interaction, as usual it’s best to make a plot. Since both variables are 
continuous, one way to do this is to make a series of 2D scatter plots, each showing the effect 
of one variable when the other variable is in a certain range, in a so-called trellis (網格) display. 
Here are four ways to do it. All of them show that the effect of NB on MeanResp gets greater 
(steeper slope) as UP gets gradually higher, thus revealing the interaction. 
 
# Method 1: Using R's base package (Figure 10) 
par(mfrow=c(2,3)) # We'll make two rows and three columns of plots 
syl = syl[order(syl$UP),] # Sort data frame by UP (smallest to largest) 
n = ceiling(nrow(syl)/6) # Number of items per each of the six subsets 
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minx = min(syl$NB) # NB will be the x-axis in each plot 
maxx = max(syl$NB) # We need overall min/max so the plots will correspond 
miny = min(syl$MeanResp) # Acceptability will be the y-axis in each plot 
maxy = max(syl$MeanResp) # Acceptability will be the y-axis in each plot 
for (i in 1:6) { # Use a loop to avoid having retype everything four times 
 minUP = syl$UP[n*(i-1)+1] # E.g. if i=2 & n=3, 1st item in 2nd subset = 3*(2-1)+1 = 4 
 maxUP = syl$UP[min(n*i,nrow(syl))] # E.g. if n=3 & nrow=4, last item is dropped 
 syl.i = subset(syl,(syl$UP >= minUP & syl$UP <= maxUP)) # Overlap one item 
 plot(syl.i$NB, syl.i $MeanResp, xlab="NB", ylab="MeanResp", 
 main=paste("UP: from",minUP,"to",maxUP)) 
 abline(lm(syl.i$MeanResp~syl.i$NB)) # Plot the linear best-fit line for each subset 
} 

 
Figure 10. Plotting UP × NB interaction using basic R 
 
# Method 2: Using the lattice package (Figure 11) 
library(lattice) # It has to be installed first, if it isn't already 
UP.eq = equal.count(syl$UP) # Like minUP & maxUP in Method 1 
xyplot(syl$MeanResp ~ syl$NB | UP.eq, # The "|" tells how to divide up the plots 
 panel = function(x, y) { # Each subplot is called a "panel" 
  panel.xyplot(x, y) # Plot the dots in each panel 
  panel.abline(lm(y~x)) # Plot the linear best-fit line for each panel 
 } # End of panel function 
) # End of xplot function 
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Figure 11. Plotting UP × NB interaction using lattice package 
 
# Method 3: Trellis-style plot using the ggplot2 package (Figure 12) 
library(ggplot2) # Only need to load once 
syl$UPsubsets = cut(syl$UP, 7) # Cut UP into non-overlapping subsets 
ggplot(data=syl, aes(NB, MeanResp)) + # Predict MeanResp from NB 
 geom_point() +  # Draw data as dots 
 geom_smooth(method=lm, se=FALSE) + # Add linear regression line for each plot 
 facet_wrap(~UPsubsets) # Cycle through each of the subsets (why not 7? no idea) 

 
Figure 12. Plotting UP × NB interaction using a trellis style in the ggplot2 package 
 
# Method 4: Using the effects package (Figure 13) 
library(effects) # Only need to load once 
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plot(allEffects(syl.int)) 
 

 
Figure 13. Plotting UP × NB interaction using the effects package 
 
 However, we might instead want to plot the interaction in a single simple graph, with NB 
on the x axis but different subranges of UP represented by different lines with different colors 
(or width or solid/dashed/dotted differences). This is relatively easy to do by combining the 
powers of the effects and ggplot2 packages: 
 
# Method 5: All-in-one plot using the effects and ggplot2 packages (Figure 14) 
library(effects) # Only need to load once 
library(ggplot2) # Only need to load once 
syl.nbup.eff = as.data.frame(effect("NB:UP",syl.int)) # Select just this interaction 
# Here's what it looks like: 
syl.nbup.eff # It's crossing NB and UP, see? 
 
 NB UP fit se lower upper 
1 0 1 0.155365 0.004627059 0.1462927 0.1644373 
2 10 1 0.2535685 0.003028136 0.2476312 0.2595058 
3 20 1 0.351772 0.005851872 0.3402982 0.3632459 
4 30 1 0.4499756 0.009830263 0.4307013 0.4692498 
5 40 1 0.5481791 0.014012087 0.5207054 0.5756527 
6 0 100 0.1529699 0.00348331 0.1461401 0.1597996 
7 10 100 0.2682895 0.002296058 0.2637876 0.2727914 
 ... ... ... ... ... ... 

 
# Now we use ggplot2 to plot it 
# We will put NB on the x axis and use UP to color the lines 
# But that means we first need to convert UP to a factor 
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syl.nbup.eff$UP = as.factor(syl.nbup.eff$UP) 
 
# The scale commands automatically pick a standard color scheme for a sequence; 
# there are lots and lots of other options, including using your own hand-picked colors: 
#   scale_color_manual(values=...) # Color of border of geoms (lines here) 
#   scale_fill_manual(values=...) # Color inside the geoms (lines here) 
#   guides(color = guide_legend(override.aes = list(fill = ...))) 
 
ggplot(data = syl.nbup.eff, mapping = aes(x = NB, y = fit, color = UP, fill = UP)) + 
  geom_line() + geom_ribbon(mapping = aes(ymin = lower, ymax = upper), alpha = .2) + 
  scale_color_brewer(type = "seq", palette = "Reds") + 
  scale_fill_brewer(type = "seq", palette = "Reds") + 
  labs(y = "MeanResp") 
  

 
Figure 14. Plotting UP × NB interaction in one graph using the effects and ggplot2 packages 
 
 Yet another way to show the interaction would be to use the x-axis and y-axis of the plot 
to represent the two independent variables, and representing the dependent variable in terms of 
color or shading, in a so-called heat map. R has a base heatmap() function, which converts a 
matrix of values into different shades (darker = higher values), but it’s awkward to create the 
matrix of mean dependent variables and then get things to plot properly (similarly for the bplot() 
function in the rms package; Harrell, 2017). However, heat maps in ggplot2 are quite easy. 
Continuing to use the effects-based data frame that we created for the previous plot, we just 
use the geom_tile() function like so, yielding a plot where lighter squares represent higher 
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values of the dependent variable. You can see the interaction from how the shading is similar 
all the way down in the leftmost column but varies in the rightmost column. 
 
# Method 6: Heatmap using the effects and ggplot2 packages (Figure 15) 
ggplot(data = syl.nbup.eff, mapping = aes(x = NB, y = UP, fill = fit)) + 
  geom_tile() + 
  labs(fill = "MeanResp") # Replaces "fit" 

 
Figure 15. Plotting UP × NB interaction as a heat map using the effects and ggplot2 packages 
 
 So which is your favorite? Mine’s the one with all the lines in the same graph (Figure 14), 
since that seems to show the interaction the most clearly, and also shows the 95% confidence 
intervals for each individual line. 
 Before ending this section, I have to say one more thing about regression interactions. 
Earlier I mentioned that interpreting them is simplified if we first convert the variables to z 
scores (again, this is also useful for computing the standardized coefficients). Some statistics 
programs do this incorrectly, by multiplying the variables before computing the z scores (i.e., 
incorrectly using z(xy), instead of the correct z(x)z(y): wrong scope!). But R lets us write our 
own code to standardize the variables first, with R’s formula syntax taking care of the 
multiplication (you can also do this easily using Excel cell functions to create your scaled 
variables, and then applying Excel’s multiple regression tool to them). 
 Let’s try this on the NBUP.txt data in syl. First, here are the results with the raw variables: 
 
syl.int = lm(MeanResp ~ NB * UP, data=syl) 
summary(syl.int) # Same as what we did above 
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Coefficients: 
 Estimate Std. Error t value Pr(>|t|)  

(Intercept) 1.55E-01 4.65E-03 33.456 < 2e-16 *** 
NB 9.80E-03 4.34E-04 22.609 < 2e-16 *** 
UP -2.42E-05 2.62E-05 -0.922 0.356  

NB:UP 1.73E-05 2.51E-06 6.888 6.79E-12 *** 
 
 Now, here’s the analysis using z scores: 
 
syl$MeanResp.z = scale(syl$MeanResp) 
syl$NB.z = scale(syl$NB) 
syl$UP.z = scale(syl$UP) 
syl.int.z = lm(MeanResp.z ~ NB.z * UP.z, data=syl) 
summary(syl.int.z) 
 
 Estimate Std. Error t value Pr(>|t|)  

(Intercept) 0.003045 0.014793 0.206 0.837  

NB.z 0.536597 0.014797 36.265 < 2e-16 *** 

UP.z 0.102062 0.014801 6.896 6.44E-12 *** 

NB.z:UP.z 0.102281 0.014849 6.888 6.79E-12 *** 

 
 Notice that the t and p values for the interaction remain the same, showing that we’ve 
calculated the standardized values correctly. The intercept doesn’t become zero, though, due 
to our use of z(x)z(y) instead of z(xy). Crucially, however, the significant positive effect of UP 
from the non-interaction model has returned. Not only does this match our expectations 
(universally more common patterns should be more acceptable for speakers of any language), 
but it also matches the plots above, where the regression lines not only change slope in each 
subplot, but change in overall height as well, with a overall higher line for higher values of UP. 
Thus it seems that converting to z scores has disentangled any confusion caused by testing the 
interaction between two continuous variables. 
 As a side benefit, the final regression table also gives us standardized coefficients, 
allowing us to compare the relative effect size of NB (β = 0.54) and UP (β = 0.10): it seems 
that even though universals do affect acceptability, lexicon-specific neighbors still have a 
stronger effect. 
 
3.3 Repeated-measures regression 
 
 All of this is lovely, of course, but if ANOVA is truly just a special case of regression, 
then how can regression handle repeated-measures data, as you get from a within-group 
experimental design? With something called repeated-measures regression, of course. 
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 Lorch and Myers (1990) (no relation!) give detailed instructions on how to do a repeated-
measures regression (see Myers et al., 2006, for a linguistic application). In the first step, you 
run separate regressions on each unit (e.g., each participant in an experiment). This gives you 
coefficients for each of the factors (and their interactions, if you included these in the model). 
These cross-unit sets of coefficients are random variables that fall into t distributions. This 
means that in the second step, you can test their significance by running one-sample t tests on 
each coefficient set. This algorithm thus first partials out the variance due to the fixed variables, 
and then partials out the variance due to the random variable, just like repeated-measures 
ANOVA does. 
 For example, suppose you run five people in an experiment where they respond to a bunch 
of words that are either nouns or verbs, and the words all vary in lexical frequency. You know 
that frequency is naturally a continuous variable, so you don’t want to divide the words into 
high vs. low categories. But you still want to look for main effects of syntactic category, 
frequency, and any interaction. 
 First you compute separate regressions for each participant i: 
 
RT(participant i, item j) = bintercepti + bnouniNoun + bfreqiLogfreq + bnoun×freqiFreq + Error(i,j) 
 
 This gives you a matrix of coefficients, as on the left side of Table 3. To finish the analysis, 
you just run one-sample two-tailed t tests on each set of five coefficients (as you can confirm 
yourself, SE = s/√n, t = Mcoef/SE, and df = n-1, where n = 5 and μ = 0). 
 
Table 3. An example of repeated-measures regression 
   

 Subj1 Subj2 Subj3 Subj4 Subj5 Mcoef SE t p 
bintercept -0.413 -0.280 -0.476 0.490 0.410 -0.054 0.208 -0.258 .809 
bnoun 1.477 1.356 1.074 1.011 0.985 1.181 0.099 11.895 < .001 
bfreq 1.760 2.367 2.288 1.676 2.239 2.066 0.144 14.333 < .001 
bnoun×freq 0.003 -0.001 0.062 -0.007 0.001 0.012 0.013 0.913 .413 

 
 Of course, it’s a lot easier if you automate this procedure, in either Excel or R. For example, 
using R you could run regressions for each participant using lm(), extract the coefficients using 
summary(lm...)$coefficients, then use t.test() to do the one-sample t tests. This would give 
you the following function: 
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lorch.myers.simple = function(data) { # Simple regression Y~X for Subj = 1, 2, ... 
 n = length(unique(data$Subj)) # Number of subjects (participants) 
 b0 = NULL # For the by-subject intercepts 
 b1 = NULL # For the by-subject coefficients for X 
 for (i in 1:n) { 
  lm.i = lm(Y~X,data=subset(data,data$Subj==i)) 
  b0 = c(b0,summary(lm.i)$coefficients[1,1]) # Put in subj i's intercept coefficient 
  b1 = c(b1,summary(lm.i)$coefficients[2,1]) # Put in subj i's coefficient for X 
 } 
 return(list(t.test(b0),t.test(b1))) # Output a list of the one-sample t tests 
} 
 
 Let’s try it out on the repeated-measures data in lorchmyers.txt, which has the dependent 
variable Y, a grouping variable called “Subj” and only one independent variable X. But X is a 
numerical variable, so neither a paired t test nor repeated-measures ANOVA make sense here. 
 
lmd = read.delim("lorchmyersdat.txt") 
head(lmd) # Take a look! 
 

 Subj Y X 
1 1 1 1 
2 1 2 1 
3 1 3 2 
4 1 4 2 
5 2 1 1 
6 2 2 1 

 
 Now we can do a repeated-measures regression on this data set. This simple function 
assumes the grouping variable is always called “Subj”, and reports the statistical results for the 
intercept as [[1]] and the sole independent variable as [[2]], as shown below. 
 
lorch.myers.simple(lmd) 
 
[[1]] 
 
        One Sample t-test 
 
data:  b0 
t = 1.2247, df = 3, p-value = 0.3081 
alternative hypothesis: true mean is not equal to 0 
95 percent confidence interval: 
 -0.7992283  1.7992283 
sample estimates: 
mean of x  
      0.5  
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[[2]] 
 
        One Sample t-test 
 
data:  b1 
t = 3.2863, df = 3, p-value = 0.04621 
alternative hypothesis: true mean is not equal to 0 
95 percent confidence interval: 
 0.04741864 2.95258136 
sample estimates: 
mean of x  
      1.5  
 
 But wait a minute. Surely, R is so powerful that it can do this for us automatically! I 
wonder what would happen if I tried to run a repeated-measures ANOVA on this data set 
anyway, using exactly the correct syntax that we learned in the ANOVA chapters, so I include 
an Error() term that refers to the grouping variable Subj as a factor, and I put this over the 
independent variable X. It doesn’t hurt to try, right? Hmm.... 
 
summary(aov(Y ~ X + Error(as.factor(Subj)/X), data = lmd)) 
 
 Well, it didn’t blow up the computer. Let’s look at these results.... 
 
Error: as.factor(Subj) 
 Df Sum Sq Mean Sq F value Pr(>F) 
Residuals 3 12.5 4.167   
 
Error: as.factor(Subj):X 
 Df Sum Sq Mean Sq F value Pr(>F)  
X 1 9 9 10.8 0.0462 * 
Residuals 3 2.5 0.833    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 
 
Error: Within 
 Df Sum Sq Mean Sq F value Pr(>F) 
Residuals 8  5 0.625   

 
 Hey! It actually worked! There’s the exact same p value that we got from 
lorch.myers.simple() for X, based on an F value that’s the square of our function’s t value 
(3.28632 = 10.79977). So I guess you can use the aov() function to run something like a 
repeated-measures regression (more accurately, repeated-measures ANCOVA). Don’t forget 
this trick: we’ll discuss it again when we get to mixed-effects modeling in a later chapter. 
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4. Model fit 
 
 If a statistical model is supposed to be a “model” in the ordinary sense of the word, then 
it’s not enough to test statistically significance, or even to examine effect sizes (as with the 
standardized β coefficients). We also want to know how well the model fits (matches) the real 
data. We’ve already seen one way to measure this: look at the overall coefficient of 
determination, or R2, which represents the proportion of variance in the data that’s captured by 
the model (roughly speaking, how close the regression “line” is to the dots in the scatter plot). 
 In this section will explore this idea in a bit more depth, first discussing how to measure 
the fit of your model, and then discussing how to improve the fit of your model. 
 
4.1 Testing model fit 
 
 We’ll start by quantifying how well your model fits the data, and then we’ll look at how 
to compare the fit of two models of the same data. 
 
4.1.1 Quantifying model fit 
 
 As we’ve seen, a multiple regression gives us p values for each of the parameters 
(including the intercept), but also a p value for the model as a whole. For example, let’s go 
back to our original regression model for the freqdur.txt data: 
 
fd = read.delim("freqdur.txt") # Make it again if you lost it 
fd$LogFreq = log(fd$Freq) 
fd.lm = lm(Dur ~ LogFreq + AoA + Fam, data = fd) 
summary(fd.lm) 
 
 At the bottom of the summary, we see this: 
 
Residual standard error: 24.86 on 1685 degrees of freedom 
Multiple R-squared:  0.00933,   Adjusted R-squared:  0.007566  
F-statistic: 5.289 on 3 and 1685 DF,  p-value: 0.001247 
 
 As we noted earlier, the R2 is a generalization of Pearson’s coefficient of determination r2 
for multiple independent variables. Computing its significance involves a ratio, namely the 
ratio of “explained variance” (described by the model) to “unexplained variance” (of the 
residuals). Since it’s a ratio of variances, the F distribution gets involved. 
 More precisely, R is computing the F value using the following steps. Note that halfway 
through R computes something it calls the residual sum of squares (RSS), but which APA 
calls the sum of squares for error (SSE). 



Ch. 10: Multiple regression 
 

49 

yhat = predict(fd.lm) # the model's estimated y-hat values 
n = nrow(fd) # number of observations 
SSM = sum((yhat-mean(fd$Dur))^2) # sum of squares of the model 
k = 4 # Number of parameters in the model: intercept, LogFreq, AoA, Fam 
dfM = k - 1 # df for model 
MSM = SSM/dfM # mean squares of the model = explained variance 
RSS = sum(resid(fd.lm)^2) # residual sum of squares (also known as SSE) 
dfE = n - k # df for error 
MSE = RSS/dfE # mean squares of the model = unexplained variance 
Fval = MSM/MSE # ratio of explained to unexplained 
pval = pf(Fval, df1=dfM, df2=dfE, lower.tail=F) # Area to the right of F value 
 
 At the end of all these steps, you get values that I call Fval and pval, as below. They are 
exactly the same as the values provided in R’s summary.lm() report above: 
 
Fval; pval 
 
[1] 5.289438 
[1] 0.001246966 
 
 As for R2 itself, this is even easier to calculate: it’s just the ratio of the variance predicted 
for Dur by the model (ŷ) divided by the actual Dur variance (again, this matches the 
summary.lm report above). Boy, what a terrible fit! 
 
var(yhat)/var(fd$Dur) 
 
[1] 0.009329537 
 
 There’s a problem with using R2 as a measure of model fit, however, a problem that turns 
out to be difficult to solve. The problem is called overfitting. At first this may sound confusing: 
if we want our model to fit the real data, then the better the fit is, the happier we should be. But 
just as eating is wonderful while overeating is bad, it is indeed possible to fit your data “too 
well”. We actually mentioned this problem way back in the correlation chapter. After all, if 
you have 100 data points, the best-fitting model would just be one that simply lists all 100 data 
points, but clearly that would be very unsatisfying. We don’t want our model to be an exact 
copy of the world, but an explanation of the world, that is, a kind of elegant, insightful 
description that allows us to see what’s important and what’s not. 
 In the case of R2, imagine two models of the same data set of 20 data points, both with R2 
=.9 (a very good fit), but one model has 15 independent variables while the other only has 3. 
Obviously the second model is much better; the first one has almost as many parameters as the 
number of data points! Thus the adjusted R2 value that R and Excel give you “punishes” you 
for complicating your model unnecessarily. In the case of fd.lm, the adjusted R2 (.007566) is 
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only slightly lower than the ordinary R2 (.00933), because our model is already rather simple 
(despite the terrible fit indicated by the tiny R2 values). 
 As we’ll see in later chapters, R2 really only makes sense for linear regression, so 
statisticians developed a more general measure abbreviated as AIC. This stands for the Akaike 
Information Criterion (see, e.g., Maindonald & Braun, 2003), invented by the Japanese 
statistician Hirotugu Akaike (1927-2009). The “information” part of the name relates to the 
idea that a good model should be able to describe your data in an efficient way. Maybe you 
remember from the probability chapter that randomness can be defined in terms of something 
called Kolmogorov complexity, where a set is considered random if it is impossible to 
summarize in an efficient way. The AIC quantifies a similar concept, so that higher values 
indicate that more of the data variance is random, so your model fits badly. 
 The formula for AIC is surprisingly simple, as shown below. Here, ln = natural log (i.e., 
log base e, i.e., R’s log()), k = number of model parameters (i.e., independent variables plus 
their interactions), and L = likelihood. Likelihood here means the conditional probability that 
some model is correct given our observations (we’ll see this idea again when we get to 
Bayesian statistics). 
 
Akaike Information Criterion: 𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑘𝑘 − 2𝑙𝑙𝑙𝑙(𝐿𝐿) 
 
 This formula implies that a greater number of parameters mean a higher AIC, and greater 
likelihood means lower AIC (since you subtract the log likelihood from the number of 
parameters). Thus, as we noted above, when we’re looking at AIC to see how good our model 
is, we want the AIC to be as small as possible, indicating a better fit. Moreover, the simplicity 
of the calculation means that the AIC values can be compared universally: any model with any 
other model. 
 In R, summary(lm(...)...) doesn’t give you the AIC value automatically, but you can ask 
for it using the AIC() function. To illustrate this, let’s compare the with-intercept and no-
intercept models for the nativism.txt data set. Remember that I promised to show you how I 
know that the with-intercept model actually has a better fit: here’s how! 
 
native = read.delim("nativism.txt") # In case you lost it 
 
# Model with intercept 
native.lm = lm(Accuracy ~ AgeAcquire + YearsUsing, data=native) 
AIC(native.lm) 
 
[1] -25.14485 
 
# Model without intercept 
native.lm.noint = lm(Accuracy ~ 0 + AgeAcquire + YearsUsing, data=native) 
AIC(native.lm.noint) 
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[1] -0.1229758 
 
 With AIC, we care about the actual value, not the magnitude. Thus the AIC for the with-
intercept model (-25.145) is much lower than the AIC for the no-intercept model (-0.123), and 
this implies that the with-intercept model has a better fit to the data. 
 
4.1.2 Comparing model fit 
 
 But how can we tell if such differences in model fit are statistically significant? The 
simplest method is to use something called a likelihood ratio test, which checks whether 
adding or removing a parameter to a model significantly improves or worsens the model’s fit 
(that is, whether the likelihood of being the true underlying “cause” of the observed data is 
higher for one model compared with another). The likelihood ratio is simplest to compute and 
interpret if one model is nested within the other (i.e., one model merely adds or removes 
parameters from the other). This nesting relationship holds for our two models of the nativism 
data, since they only differ in whether or not we include the intercept: 
 
With intercept: Estimated accuracy =  b0  + b1AgeAcquire  + b2YearsUsing 
Without intercept: Estimated accuracy =       b1AgeAcquire  + b2YearsUsing 
 
 The ratio involves dividing one variance (here, what’s explained by the complex model 
but not by the simple model) by another (what’s not explained by the complex model). So 
running the test uses a formula like the following, for simpler model 1 nested inside complex 
model 2 (recall that MSS = mean sum of squares, a kind of variance, that RSS is also called 
SSE, and that k = the number of model parameters): 
 

𝐹𝐹 = 𝑀𝑀𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚
𝑀𝑀𝑆𝑆𝑆𝑆𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑏𝑏𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚

=
�𝑅𝑅𝑅𝑅𝑅𝑅1−𝑅𝑅𝑅𝑅𝑅𝑅2𝑘𝑘2−𝑘𝑘1

�

�𝑅𝑅𝑅𝑅𝑅𝑅2𝑏𝑏−𝑘𝑘2
�

  

 
 Because this particular F ratio is similar to what’s used in ANOVA, we can use R’s 
anova() function to compute it for us, using lm() objects as the arguments. It’s best to put the 
simpler model first, so the ANOVA table is arranged in a more intuitive way, but it works in 
either order: 
 
anova(native.lm.noint, native.lm) 
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Model 1: Accuracy ~ 0 + AgeAcquire + YearsUsing 
Model 2: Accuracy ~ AgeAcquire + YearsUsing 

 Res.Df RSS Df Sum of Sq F Pr(>F)  
1 24 1.20288      
2 23 0.42546 1 0.77742 42.027 1.292e-06 *** 

 
 This table shows the two dfs for F (residual df, from the number of data points and 
parameters, and the model df, derived from the difference in the number of parameters across 
models), residual sum of squares (RSS), and the sum of squares (SS) for the model comparison. 
Here the F value is huge, so the p value is tiny. Thus we could report this analysis like so: “A 
likelihood ratio test showed that the with-intercept model had significantly better fit than the 
no-intercept model (F(1,23) = 42.037, p < .0001). 
 As I mentioned earlier, it’s best to always include an intercept in your regression model 
anyway, but at least now we can justify this convention for this particular data set. 
 If you think about it, you may be able to see that we can also use a likelihood ratio test as 
an alternative way to test the significance of each parameter in the model. For example, let’s 
go back to freqdur.txt again, and test the significance of LogFreq in two ways: first, the easy 
way (using summary(lm(...)), which tests significance with t values), and then by comparing 
a model with LogFreq present with a nested model that’s just like it, but is missing LogFreq 
(to see if the model with LogFreq has a better overall fit). 
 Here’s the easy way again (in the output, I only show the LogFreq part): 
 
fd.lm = lm(Dur ~ LogFreq + AoA + Fam, data = fd) 
summary(fd.lm) # Showing just the part for LogFreq 
 
 
 Estimate Std. Error t value Pr(>|t|)  

LogFreq -1.1815 0.5630 -2.099 0.0360 * 
 
 Now here’s the new way using a log likelihood test. We start by creating a model without 
LogFreq: 
 
fd.lm.nofreq = lm(Dur ~ AoA + Fam, data = fd) 
summary(fd.lm.nofreq) # Take a look if you're curious, but it's not crucial 
 
 Actually, there’s an easier way to modify an existing model, by using the update() 
function, which takes as arguments the original lm() object and a sketch of a formula with dots 
for everything except the change you want: 
 
fd.lm.nofreq.lazy = update(fd.lm, . ~ . - LogFreq) # Remove LogFreq from full model 
summary(fd.lm.nofreq.lazy) # It's the same, right? 
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 OK, now for the likelihood ratio test, again putting the simpler model first: 
 
anova(fd.lm.nofreq, fd.lm) 
 
Model 1: Dur ~ AoA + Fam 
Model 2: Dur ~ LogFreq + AoA + Fam 

 Res.Df RSS Df Sum of Sq F Pr(>F)  
1 1686 1043708      

2 1685 1040987 1 2720.8 4.404 0.036 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 
 
 In this case we get exactly the same p value for LogFreq that we got before, which is 
comforting: we can trust these p values, it seems. However, this kind of matching results 
doesn’t always happen, as we’ll see when we look at more complex models in later chapters 
(so we’ll need to discuss when to use which analysis and why). 
 Likelihood ratio tests can also help you find out whether two coefficients within a single 
model are significantly different from each other. 
 For this example, let’s go back to the nativism.txt data. In the better-fitting with-intercept 
model, only AgeAcquire is significant, and it also has a large standardized coefficient than 
YearsUsing. But does this also mean that AgeAcquire actually plays a statistically more 
important role than YearsUsing? Not necessarily. Perhaps the lack of significance for 
YearsUsing is a Type I error, and perhaps its smaller standardized coefficient is also just bad 
luck. 
 This kind of situation comes up a lot: we have multiple variables in a multiple regression, 
and we not only want to know if they are individually significant, but also to compare them 
statistically. Amazingly, it’s possible to answer this kind of questions with likelihood ratio test 
on nested models. I give a step-by-step example showing this in Myers (2012). 
 The trick is to compare our full model, where the two key coefficients are allowed to be 
different, with a simpler model that requires the two coefficients to be the same: 
 
Simpler model: ŷ = b0 + b1x1 + b2x2, where b1 = b2 
Full model:  ŷ = b0 + b1x1 + b2x2  
 
 These two models don’t look nested, and the F formula above is only valid for nested 
models. (R actually lets you use anova() to compare non-nested models, as long as they are 
based on the same data, but R’s documentation is unclear on how it works; maybe it’s using 
bootstrapping methods, as discussed in Lewis et al., 2011.) 
 Nevertheless, a bit of algebra shows that the above models really are nested (follow along 
if you like algebra): 
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Simpler model: ŷ = b0 + b1x1 + b2x2, where b 1 = b 2 
     = b0 + b1x1 + b1x2 
     = b0 + b1(x1 + x2)    {look for this piece nested below} 
Full model: ŷ = b0 + b1x1 + b2x2  
     = b0 + (b'1 + b'2)x1 +(b'1 - b'2)x2 {using invented b'1 and b'2 values} 

     = b0 + (b'1 + b'2)x1 +(b'1 - b'2)x2 
     = b0 + (b'1x1 + b'2x1) +(b'1x2 - b'2x2) 
     = b0 + (b'1x1 + b'1x2) +(b'2x1 - b'2x2) 
     = b0 + b'1(x1 + x2) +b'2(x1 - x2) {coefficients are derived, so...} 
     = b0 + b1(x1 + x2) +b2(x1 - x2) {... we can use our usual symbols} 
 
 Following this logic, we can compare these two models: 
 
Simpler model: ŷ = b0 + b1(x1 + x2) 
Full model:  ŷ = b0 + b1x1 + b2x2  
 
 The way to implement this in R’s formula syntax is to take the full model, written in the 
normal way, and then for the simpler model, make use of the identity function I() to force R to 
add together x1 and x2 and compute a single coefficient for them. In other words, you compare 
a model with two separate independent variables against a simple model with a single 
independent variable that is the sum of these two. 
 Let’s apply this trick to the nativism model: 
 
native.lm =  lm(Accuracy ~ AgeAcquire + YearsUsing, data=native) 
native.lm.equal = lm(Accuracy ~ I(AgeAcquire + YearsUsing), data=native) 
anova(native.lm.equal, native.lm) 
 
 The result is significant (F(1,23) = 26.28, p < .0001). This means that we get a better 
model fit if we use separate coefficients for AgeAcquire and for YearsUsing, which in turn 
means that AgeAcquire has a significantly different effect from YearsUsing. Since we already 
know the standardized coefficient for AgeAcquire is larger than that for YearsUsing, this in 
turn implies that AgeAcquire has a significantly greater effect than YearsUsing. So maybe the 
nativists really do win after all...? 
 
4.2 Improving your model 
 
 As we’ve implied throughout this chapter, regression models can a variety of problems. 
If the residuals aren’t normal, this suggests that there’s another variable involved that you 
should measure, so you can factor out its effects as well. If the model has too many parameters 
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(independent variables and their interactions), you might consider dropping some, in order to 
raise your adjusted R2 and lower AIC value. If your independent variables are too confounded, 
you may also want to drop one. Here we’ll discuss the confounding problem first, and then 
discuss how to systematically adjust your model to deal with confounds or other such problems. 
 
4.2.1 The challenge of collinearity 
 
 Variables that are too highly correlated to tease apart are called collinear (同線) for the 
same reason that a series of numbers is called a “vector”. Namely, a series of n numbers can 
be thought of as describing an arrow aiming at a point in n-dimensional space, and completely 
correlated vectors overlap on the same line. 
 For example, the two vectors (1,2) and (2,4) are perfectly correlated, which means that 
the two arrows aiming at them from the origin point (0,0) overlap perfectly (see Figure 16): 
 
cor(c(1,2),c(2,4)) 
 
[1] 1 
 
plot(c(1,2),c(2,4),xlim=c(0,5),ylim=c(0,5)) 
arrows(0,0,1,2) # Arrow to first point (thin solid line) 
arrows(0,0,2,4,lty=2,lwd=2) # Arrow to second point (thick dashed line) 

 
Figure 16. Totally collinear vectors 
 
 Similarly, partially correlated variables give partially collinear vectors (I’ll let you plot 
this yourself): 
 
x = runif(10) 
y = x + runif(10)/2 # This makes x and y partially correlated, right? 
cor(x,y) # Yes indeed, |r| is quite close to 1 
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plot(x,y,xlim=c(0,1),ylim=c(0,max(y))) 
arrows(0,0,x,y) # Cute! 
 
 This math matters because collinearity poses a big challenge to regression modeling. For 
example, if our independent variables are completely collinear, R just crashes! (The same kind 
of crash happens in Excel - try it with your own fake data and you’ll see for yourself!) 
 
x1 = rnorm(100) 
x2 = 2*x1 + 1 # Any linear equation will make x2 totally collinear with x1 
cor(x1,x2) # Completely collinear! 
y = rnorm(100) # It doesn't matter what the dependent variable is; it'll never work 
summary(lm(y~x1+x2)) # It can't figure out x2, just gives NA ("not available") 
summary(lm(y~x2+x1)) # Now it can't figure out x1: NA again 
 
 In other words, completely collinear independent variables are completely confounded: 
you can’t tell which one “really” is affecting the dependent variable. This is too bad, since the 
whole point of doing multiple regression is to see which factors are doing separately from all 
of the others. For example, the AgeAcquire and YearsUsing represent innate and learned 
factors, and even though they are partially correlated, linguists would really like to know how 
to distinguish between them: 
 
cor(native$AgeAcquire, native$YearsUsing) 
 
[1] -0.6886916 
 
 Fortunately, the situation isn’t hopeless. After all, |r| = .69 isn’t as strongly correlated as 
|r| = 1. But how correlated is too correlated to trust in a regression analysis? As with p-values, 
there’s no mathematically objective number for “dangerous collinearity”, but there are some 
commonly used rules of thumb (經驗法則). 
 One of them uses something called the variance inflation factor (VIF). You calculate 
VIF for each independent variable xi by first computing the tolerance, which is the proportion 
of variance in xi that is not explained by all of the other independent variables (i.e., 1-R2 for xi 
~ xothers). You want the tolerance to be as high as possible (since then xi isn’t well predicted by 
the other variables). VIF is the inverse, so you want VIFi for xi to be as low as possible: 
 

𝑉𝑉𝐴𝐴𝐹𝐹𝑖𝑖 = 1
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖

= 1
1−𝑅𝑅𝑖𝑖2

  where Ri
2 is for the model xi ~ x1 + ... + xk (without xi) 

 
 The rule of thumb is that if VIF is 5 or lower (or the tolerance is 1/5 or higher), then you 
don’t have to worry about collinearity (implying that Ri

2 ≤ 4/5 = .8). Myers et al. (2006) is an 
example of a study using tolerance to test for collinearity. 
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 Does the nativism.txt analysis survive this test? Let’s see. Rather than computing VIF by 
hand, let’s load the package car again (Fox & Weisberg, 2011), which has a built-in function 
for it, called vif(): 
 
library(car) 
vif(native.lm) 
 
AgeAcquire YearsUsing 

1.902212 1.902212 
 
 Both VIF values are the same, since we only have two variables here (so r2 is the same 
for x1 ~ x2 and x2 ~ x1), and crucially, both are well below 5, so the rule of thumb says we don’t 
have to worry about collinearity here. 
 It’s also possible to test for collinearity in all of the model parameters as a group, by 
computing the so-called condition number (條件數), which again you want to be as low as 
possible. The math is based on the matrix formed by combining all of the independent variable 
vectors into a grid (matrix) of numbers. 
 The base version of R computes the condition number for a matrix using the kappa 
function (for the Greek letter κ, for “/k/ondition”). The rule of thumb is that you want κ to be 
no higher than 30, so again we’re safe here: 
kappa(native[2:3]) # columns with independent variables 
 
[1] 2.338944 
 
 However, the matrix used in multiple regression includes that vector of 1s for the intercept 
(remember?), which has to be treated in a special way. So following Belsley et al. (1980), 
Baayen (2008) suggests using the function collin.fnc() in his package languageR. Again we 
get a condition number well below 30 (plus a bunch of irrelevant warnings): 
 
library(languageR) 
collin.fnc(native[2:3])$cnumber 
 
[1] 8.020331 
 
 What about freqdur.txt? We saw that the three independent variables are correlated, but 
are they so well correlated that we face a collinearity problem? We get different answers using 
different methods: 
 
vif(fd.lm) # Below 5, so no problem! 
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AoA Fam LogFreq 
2.008592 3.533954 2.163047 

 
kappa(fd[c("AoA","Fam","LogFreq")]) # Below 30, so no problem! 
 
[1] 8.709643 
 
collin.fnc(fd[c("AoA","Fam","LogFreq")])$cnumber # Above 30, so a problem! 
 
[1] 32.40544 
 
 Which one method is the “most right”? Unfortunately, I suppose it’s the third one, since 
it’s the most mathematically sophisticated. Moreover, we’ve already seen that in our model, 
Dur is significantly affected by LogFreq but not by Fam, even though the data were faked so 
that Dur was computed using Fam but not LogFreq. Mabye this mismatch is partly due to an 
overly large amount of collinearity? Yet on the other hand, we also have to be wary of Type II 
errors, missing real patterns due to being overly cautious. As Johnson (2008) says: regression 
is partly an art, not pure science. 
 
4.2.2 Dealing with collinearity 
 
 This principle (that regression is partly an art) is frustrating to some people, who want 
their little statistics machine to pop out the One True Answer for every problem. This has led 
to a popular (but controversial) method called stepwise regression. In this approach, you start 
with a regression model and then add or remove independent variables from it one at a time, in 
order to find the model that gives the best possible fit (without overfitting). R’s version of this 
method, implemented in the step() function, uses the AIC to compare the fits of the models as 
they grow or shrink. 
 To use this function, we need to construct the simplest possible model, namely an “empty” 
one that only has the intercept. Since the intercept is symbolized by 1 in R’s formula notation, 
a model with only an intercept has the form y ~ 1. This may seem really weird, but it’s actually 
equivalent to a one-sample t test on the dependent variable (testing the null hypothesis that its 
mean is zero). 
 So for the freqdur.txt data, the intercept-only model looks like this: 
 
fd.lm0 = lm(Dur ~ 1, data = fd) 
 
 You can see that it’s computing a one-sample t test by comparing the following; you get 
the same t and p values for both, and the intercept in the intercept-only model is the same as 
the mean in the one-sample t test (try it!): 
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summary(fd.lm0) 
t.test(fd$Dur) 
 
 Now we want to compare this empty model with the full fd.lm model. The step() function 
compares this empty model with a formula describing the full model, including/dropping 
parameters to find out which ones really improve the overall model fit: 
summary(step(fd.lm0, Dur ~ LogFreq + AoA + Fam, data = fd)) 
 
 This gives you a long output, first showing each step in its search for the best model: 
 
Start:  AIC=10867.61 
Dur ~ 1 
 
 Df Sum of Sq RSS AIC 
+ AoA 1 6733.1 1044058 10859 
+ LogFreq 1 6082.2 1044708 10860 
+ Fam 1 4906 1045885 10862 
<none>   1050791 10868 
Step:  AIC=10858.75 
Dur ~ AoA 
 
 Df Sum of Sq RSS AIC 
+ LogFreq 1 2597.0 1041461 10856 
<none>   1044058 10859 
+ Fam 1 349.5 1043708 10860 
- AoA 1 6733.1 1050791 10868 
 
Step:  AIC=10856.55 
Dur ~ AoA + LogFreq 
 
 Df Sum of Sq RSS AIC 
<none>   1041461 10856 
+ Fam 1 473.2 1040987 10858 
- LogFreq 1 2597.0 1044058 10859 
- AoA 1 3247.9 1044708 10860 
Call: 
lm(formula = Dur ~ AoA + LogFreq, data = fd) 
 
Residuals: 
Min 1Q Median 3Q Max 
-88.852 -16.007 -0.379 15.995 98.08 
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Coefficients: 
 Estimate Std. Error t value Pr(>|t|)  
(Intercept) 246.4429 2.9585 83.301 <2e-16 *** 
AoA 1.2557 0.5476 2.293 0.022 * 
LogFreq -0.8465 0.4128 -2.05 0.0405 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 
 
Residual standard error: 24.85 on 1686 degrees of freedom 
Multiple R-squared:  0.008879,  Adjusted R-squared:  0.007703  
F-statistic: 7.552 on 2 and 1686 DF,  p-value: 0.0005429 
 
 Unsurprisingly in this case, the stepwise procedure throws out Fam, the only independent 
variable that’s not significant in the full model. But at least we can now say we determined this 
in an “objective” way. 
 However, many statisticians are quite critical of stepwise regression. For example, Baayen 
(2008) has detailed discussions of how to do regression analyses (including tests for 
collinearity and the normality of residuals), but he doesn’t mention stepwise regression at all. 
Thompson (1995), Winter (2019, pp. 276-277) and many others argue against this method 
explicitly. 
 One big problem is that the probabilities in each step of stepwise regression are 
conditional probabilities, assuming all of the previous steps. After all, the algorithm only 
moves from one model to the next because of some property of the previous model. Yet the p 
values that are computed in the final analysis don’t take any of these previous steps into 
consideration. This implies that these p values may not be appropriate for our actual situation, 
just as the p values from multiple comparisons may not be appropriate. 
 More generally, there’s no reason to believe that stepwise regression is a magic formula 
for finding statistical models; after all, even the experts disagree on the “best” way to apply 
this kind of algorithm. 
 And indeed, there are many other different methods that have been proposed to improve 
regression models. This chapter is already too long to explain any in detail, but here are the 
basic ideas behind two more of them, both from Baayen (2008). 
 First, Baayen (2008) suggests trying to combine collinear variables into a single variable 
that captures most of their variance. This only makes sense if the variables are also conceptually 
related (i.e., multiple ways to measure the same real-world concept). For example, if we think 
that familiarity judgments for words are really just a subjective way to measure objective 
lexical frequency, then we could combine Fam and LogFreq together into one variable, as 
opposed to age of acquisition, something that we might think reflects something very different, 
like early brain development. To do this, Baayen recommends finding the principal 
components of a set of variables (using R’s prcomp() function), and then replacing these 
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variables in your regression with the most important of these principal components (this would 
be in prcomp()$x[,1]; use ?prcomp to learn more). 
 Second, Baayen (2008) suggests a way to adjust your model if it seems to be overfitting 
the data, that is, if it’s too complex to make useful predictions beyond your specific data set. 
The method involves using a bootstrapping method to simulate random samples that you can 
pretend come from the same population that you are testing with your sample, and then seeing 
how well your model generalizes to all of those other data sets. If it doesn’t generalize well, 
then your model is overfitted to your specific sample, and some variables should be dropped 
to make the model simpler. To try this yourself, you have to install the rms package (for 
“Regression Modeling Strategies”: Harrell, 2017; this packages updates Harrell’s old Design 
package, that Baayen discusses in his book). You also have to redo your linear model using the 
rms package’s ols() function (for “ordinary least squares”, which is how the residuals are 
minimized in computing a linear regression), instead of R’s base function lm(). Finally, you 
put your fitted ols model inside the rms package’s validate() function. 
 As yet another alternative, you could stick with your original model and estimate the 
relative importance of each predictor using the various options provided in R’s relaimpo 
package (Grömping, 2006). 
 In any case, returning to the statistics-as-art idea, it’s probably wisest to use your real-
world knowledge to fix a problematic model than to trust some textbook’s favorite “objective” 
method. For example, going back to the first dumb example in this chapter, in a study on 
children’s vocabularies you might find that height and age are too collinear to tease apart 
mathematically in a multiple regression analysis. In that case, don’t do stepwise regression to 
find out which is right, since from the real-world situation it’s already obvious that height is 
the irrelevant one! Similarly, don’t include interactions in your model unless you have good 
theoretical reasons to do so (as in our analysis of NBUP.txt): interactions between continuous 
variables can be counterintuitive (as we discussed), and three- or four-way interactions are 
often just too complex to understand, even for factorial data. 
 
5. Conclusions 
 
 Apologies again for the great length of this chapter, but I hope you can see why it was 
necessary: regression truly lies at the heart of the most important statistical methods, from t 
tests through ANOVA and then beyond ordinary linear regression itself. Computing a multiple 
regression is easy, but understanding why it works, how to avoid mistakes, and how to fix the 
mistakes takes a bit more effort. The core trick used by multiple regression is the same as in 
ANOVA: partialing out the variance, so we can see how each independent variable affects the 
dependent variable, in the context of all the other variables. Things get more complex with 
regression than with ANOVA, however, because the variables may be partially correlated, 
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maybe even collinear. It’s also likely that your independent variables were not all 
predetermined by some experimental design, as is usually the case with ANOVA, but instead 
you have some freedom to try different variables to see what effect they have. Thus you have 
to make lots of decisions: Do want to test for interactions (and if so, how should you plot them)? 
Do you want to generate standardized regression coefficients to compare effect sizes, and 
maybe even test whether two variables within a model are statistically different from each other? 
How can you tell if a newly modified model fits the data better than the original model? How 
should you recode your variables so that they make the most sense? Does it ever make sense 
to remove the intercept? Once you get familiar with these concepts, however, you will find that 
you need them again and again as we continue through this book (and as you continue beyond 
this book), so all your hard work will pay off! Finally, the artistic side of statistics is particularly 
prominent when it comes to regression, so let your real-world knowledge provide some 
guidance too, not just the textbooks and self-proclaimed statistical experts! 
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