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1. Introduction 
 
 Now that we’ve mastered the basics of parametric statistical tests, used for testing 
hypotheses about continuous distributions that are normal-ish, how can we make them more 
useful? After all, one-sample tests are useful to know about if you want to get a sense of how 
statistics works, but by themselves they’re not very useful in real-life situations. Most of the 
time, we want to compare something with something else, where both of the somethings are 
somethings that we’ve actually observed, not an imaginary population. For example, in an 
experiment that gives you normal-ish continuous values (like phonetic measures or reaction 
times), good experimental design means that you have to have different conditions to compare, 
at least a control condition (the baseline condition). 
 So what you need to learn next is how to do a parametric test when you have two samples. 
That’s what we’ll do in this chapter, plus a bit more. The type of test we’ll need for this comes 
from the t test family. Since statistical significance doesn’t necessarily imply real-world 
“significance”, we’ll also see how to quantify the effect size of a t test, particularly via 
confidence intervals. We’ll also briefly discuss how to do nonparametric two-sample tests 
that you might want to use when your data aren’t normal at all. 
 Along the way, we’ll learn that the specific type of t test you need to do depends on certain 
basic properties of your data: if your two samples are independent of each other, then you want 
to do an unpaired t test, but if your two samples come in correlated pairs, you do a paired t 
test. Moreover, if your two samples are independent of each other but also have different 
variances (i.e., the square of their standard deviations), then this violates an assumption of the 
most common type of unpaired t test, so you have use a more general (but less powerful) 
version that doesn’t depend on this assumption. Everything is connected: deciding which 
version is better depends, in turn, on a variance test that will end up lying at the heart of 
running an ANOVA (where “VA” stands for variance), which turns out basically to be a 
generalization of the t test anyway. 
 
2. t tests 
 
 It may seem that turning a one-sample t test into a two-sample t test is just as magical as 
turning one banana into two. But due to the hierarchical nature of mathematical logic, all t tests 
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are actually quite closely related. Later in this section we’ll get into the mathematical tricks 
that make this work, but let’s first start with some simple examples that we can run right away 
in Excel and R. 
 
2.1 The unpaired t test 
 
 When is it appropriate to run an unpaired t test (非成對樣本 t 檢定)? As noted in the 
introduction, the key requirements are that your data are continuous, pretty much normally 
distributed, and divided into two independent samples. In case you forgot what “independent” 
means in statistics, here’s a reminder: it has to do with probability. Two samples are 
independent if no value in one sample is predictable from any value in the other sample (just 
as you can’t guess the color of a card simply by knowing that it’s Q). In other words, the two 
samples aren’t correlated, and in fact they may not even have the same sample size. This 
situation arises a lot in linguistics: you want to compare reaction times to a set of nouns with a 
set of unrelated verbs, or you want to compare accuracy rates produced by a bunch of female 
students with a bunch of male students. 
 As long as your samples are independent and have reasonably normal distributions, an 
unpaired t test should be helpful to test the null hypothesis that the two sample means are the 
same. Similar with the one-sample t test, you could instead decide to make your null hypothesis 
say that the difference between the two sample means (more precisely, between the means of 
the two populations that the null hypothesis says your means come from) is some specific 
number other than zero (e.g., μ1 - μ2 = 235 or whatever), or you could choose the directional 
hypothesis that one mean is equal to or bigger than the other (e.g., H0: μ1 ≥ μ2) and compute a 
one-tailed p value. But in real life, the null hypothesis is virtually always the simplest 
nondirectional hypothesis, namely that the means are identical (e.g., H0: μ1 = μ2), giving you a 
two-tailed p value. 
 Of course, as with any asymptotic test, you’ll get better results (i.e., have greater 
statistical power) with larger sample sizes, but as Gosset proved in his beer factory, the t test 
can handle smallish samples too. There are other technical issues about sample sizes and 
distribution parameters that affect the unpaired t test, but I’ll save those for the mathematical 
sections below. 
 For now, though, let’s skip all of the math and jump right into examples. If you are not 
too busy, please go get the file t-test-samples.xls, which has fake data cleverly designed to 
show the strengths and weaknesses of various kinds of t tests. Since we’re doing an unpaired t 
test, we’ll start with the first data set on the left (boys vs. girls), which involve two independent 
samples. Even though the sample sizes are the same, I hereby declare that these two sets of 
fake kids have no natural connection (e.g., they’re not pairs of brothers and sisters). We want 
to know if the boys and girls show a significant difference in their mean scores. 
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2.1.1 The simplest kind of unpaired t test in Excel 
 
 To run an unpaired t test on these data in Excel, we need to use the Analysis ToolPak, so 
open it up, and look for the t tests (t 檢定). What you’ll see is that there are three. For now, 
just trust me and choose this one: t-Test: Two-Sample Assuming Equal Variances (t 檢定：

兩個母體平均數差的檢定，假設變異數相等). Pretty soon I’ll explain why variance matters, 
and show how to use the other two t test tools that Excel offers (though you can probably 
already guess that one of the other versions is for the paired t test). 
 Now we get a dialog box something like that shown in Figure 1 (this ancient image is 
from Excel 2003, but the content hasn’t changed): 
 

 

Figure 1. The basic unpaired t test dialog window in Excel 
 
 Then we select the two samples to go into the first two boxes, including the column labels 
(“Boys” and “Girls”). As usual with Analysis ToolPak tools, you need to select the precise 
ranges; unlike cell functions, you can’t select the whole column, or else the TookPak tool will 
give you an error message. Since our null hypothesis is the usual nondirectional one, the 
“boring” population for the difference between the sample means is assumed to be zero. In 
formal terms, our null hypothesis is H0:µ1 = µ2 (that the two population means associated with 
the two samples are identical), which is the same as H0:µ1 - µ2 = 0. So we enter “0” into the 
next box, and I hope you remembered to select the labels that you typed in at the top of each 
sample, in which case you should click the 標記 (L) box, or else your results will be given in 
terms of 「變數 1」 (Variable 1) and 「變數 2」 (Variable 2), which would be pretty useless, 
now wouldn’t it? You can just leave all the other defaults alone, including the alpha level (A) 
of .05 (I’ll explain later why this can be useful). 
 Below is what you get if you did it right. You should be able to figure out most of this 
report, even if you don’t know yet how all of it was calculated. There are the two sample means 
at the top, then their two variances (s2: to confirm, use =VAR() or =STDEV()^2, or the slightly 
corrected sample functions =VAR.S() or =STDEV.S()^2), then their sample sizes, then 
“pooled” something (which we’ll come back to later), then the sample mean difference 
assumed by the null hypothesis (zero), then the degrees of freedom (which we’ll come back to 
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later too, though if you guess that this value is computed by adding up the two sample sizes 
and subtracting two, df = n1 + n2 - 2, then you are right), then the t value (computed in a way 
very similar to the one-sample t test, as we’ll see soon). Next you get the one-tailed p value 
and the one-tailed critical value (which, as you should remember, is the value of t where the 
one-tailed p = α, which we kept as the default .05), based on the directional null hypothesis that 
the first sample mean (Boys) is smaller or equal to the second sample mean (Girls) (Excel bases 
this direction on the order of the two columns). Then finally you get the two-tailed p value and 
critical value for the nondirectional test that we actually want to do here. 
 

t 檢定：兩個母體平均數差的檢定，假設變異數相等 

 Boys Girls 
平均數 4.511016 2.94041 
變異數 1.710218 0.882993 
觀察值個數 10 10 
Pooled 變異數 1.296605  
假設的均數差 0  
自由度 18  
t 統計 3.08424  
P(T<=t) 單尾 0.003198  
臨界值：單尾 1.734063  
P(T<=t) 雙尾 0.006396  
臨界值：雙尾 2.100924  

 
 How did we get that two-tailed p value from that df and t value? We got it exactly the 
same way we did for the one-sample t test: the two-tailed p value represents the total area in 
the two tails beyond the point marked by t, on both sides of zero, in the t distribution defined 
by that df. So to compute this using Excel cell functions, you can just use =T.DIST(-ABS(t), 
df, TRUE)*2, and then click on the relevant cells in the report table to get the t and df values. 
Try it! 
 So putting this all together (and ignoring the stuff we don’t need), we could report this 
statistical analysis like so: “Boys (M 4.51, SD 1.31) were significantly different from girls (M 
2.94, SD 0.94) by a two-tailed unpaired t test (t(18) = 3.08, p < .05)” or “p < .01” or “p = .006” 
(depending on the style preferred by the journal you’re submitting this to). If you want to be 
even more precise, you could call this an unpaired t test assuming equal variance, but that’s the 
most common kind of unpaired t test, and anyway, people will know which kind you used just 
from the df (as I’ll explain shortly). That wasn’t so hard, was it? 
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2.1.2 The simplest kind of unpaired t test in R 
 
 Of course we can do exactly the same thing in R. One way to get the same data into R 
would be to copy and paste the Boys and Girls columns from Excel into a text file, naming it, 
and then using read.table() or read.delim() to read it into R. But this method won’t work in 
general, because R prefers data frames, which are unlike Excel sheets in that no cell can be 
empty. Instead, data frames are more of like matrixes, in that they’re a full rectangle of values. 
The logic behind this preference is simple: in a typical data frame, each row represents 
everything we know about exactly one data point. In this case, each data point has two 
properties: the gender of the kid, and the kid’s measurement score. 
 So it’s better to rearrange the data the way R likes it, and in my experience, this is easier 
to do in Excel. In this case, I already did it for you: the file BoysGirls.txt contains the two fake 
data sets about boys and girls, which I decided to call Study 1 and Study 2, respectively, and I 
also gave the fake participants unique identification numbers. 
 Let’s look at the first data set (as usual, make sure you see what my R code is doing): 
 
bg = read.table("BoysGirls.txt",T) 
study1 = subset(bg, bg$Study==1) 
boys1 = study1$Measure[study1$Gender=="Boy"] 
girls1 = study1$Measure[study1$Gender=="Girl"] 
 
 R uses the same function to run any kind of t test, namely t.test(). Yes, that’s exactly the 
same one we’ve already used for one sample t tests. To run different kinds of t tests, you just 
use different values for the arguments (see what they are by checking help with ?t.test, and 
looking in the Arguments section). 
 R deals with the problem of the two kinds of unpaired t tests by making the more general 
version the default (i.e., the one that doesn’t care about variance). However, this general version 
is not the most commonly used version, nor is it the conceptually simplest version, so I’ll 
introduce it a little bit later. So in order to imitate what we just did in Excel, we need to tell R 
to please use the more common, simpler version, by setting the var.equal argument to TRUE. 
Unlike Excel, R knows that the usual null hypothesis is H0: μ1 = μ2, so it’s set by default. 
 With that as background, here we go: 
 
t.test(boys1, girls1, var.equal = T) 
 
 This produces the following text report. Look carefully, and you’ll see the same crucial 
values that we got from Excel. We also get that confidence interval thing, which (you’ll be 
happy to learn) I will finally explain in this chapter. Moreover, whereas in Excel we can click 
on the values in the output table to do other calculations (as you should have tried doing in the 
previous section with the t and df values to double-check the p value), in R we can pull out 
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specific values (if we want) using $ (again, check help with ?t.test, then look at Values). So 
we can write the same t test report in the standard format. 
 
        Two Sample t-test 
 
data:  boys1 and girls1 
t = 3.0842, df = 18, p-value = 0.006396 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 0.5007406 2.6404700 
sample estimates: 
mean of x mean of y  
 4.511016  2.940410 
 
2.2 The paired t test 
 
 The unpaired t test is extremely useful in linguistic research, but it is only relevant if the 
two samples are independent. This was appropriate with our example above, since we used a 
between-group design to test separate groups of boys and girls. But in other studies, each value 
in one sample is actually paired with a value in the other sample, in that they represent pairs of 
values associated with the same unit, like the same word or person. This happens a lot in 
linguistic research, for example in a within-group (within-participants) design, where you get 
two measures from each participant (e.g., each person responds both to nouns and to verbs). In 
this kind of situation (and assuming your dependent variable is still continuous and basically 
normal), you are justified in doing a paired t test. 
 Within-group designs are logically more powerful than between-group designs, since they 
remove the confound between conditions and participants. For example, if you test one random 
group of participants on nouns and a second group on verbs, you wouldn’t be able to be sure if 
any difference you find was truly caused by the noun-verb contrast, and not by some other 
unknown difference in the two groups of participants. With large enough random samples, the 
risk of this kind of confound should go down, but the risk never disappears entirely. 
 Within-group designs are also statistically more powerful than between-group designs. 
For example, say that for every participant in an experiment, noun reaction times (RTs) are 
exactly 10 ms faster than verb RTs, but the variance across participants is much higher than 
that, say 100 ms. If you did an unpaired t test, this 10 ms difference may be hidden in all the 
random noise, but with a t test conducted on the pairs, the consistency of the difference in each 
pair of data may make the interesting difference stand out. 
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2.2.1 The paired t test in Excel 
 
 You can see the effect of pairing by looking at the last two examples in t-test-samples.xls. 
I’ve faked the data so that in the first set, there’s a relatively high correlation between the paired 
data, while in the second set, there’s a relatively low correlation. You can confirm the 
correlations yourself using =CORREL(): you should get r = .89 and r = -.30, respectively. 
Note that the two sample means and standard deviations are identical across the two data sets, 
because in fact their values are exactly the same; the correlation difference was created by me 
cleverly randomizing the order of one sample in the latter data set. 
 Now see what happens if we do paired t tests on these two data sets using Excel’s statistics 
tool 「t 檢定：成對母體平均數差異檢定」(t-Test: Paired Two Sample for Means). Try 
it yourself (the procedure is very similar to what we did above for the unpaired t test). If you 
do it right, you could report the first set of results like so: “The mean score for nouns (M 4.51, 
SD 1.31) was significantly different from the mean score for verbs (M 2.94, SD 0.94) by a two-
tailed paired t test (t(9) = 7.71, p < .001)”. By contrast, the report for the second data set analysis 
might say: “The mean score for nouns (M 4.51, SD 1.31) was significantly different from the 
mean score for verbs (M 2.94, SD 0.94) by a two-tailed paired t test (t(9) = 2.72, p < .05).” 
We’ll explain all these numbers soon, but as before, you might be able to guess that here, df = 
n - 1 (where n is the number of pairs, that is, the size of either sample, since both samples have 
to be the same size in order to form pairs). 
 Notice that the first fake paired data are exactly the same as the “boys vs. girls” data that 
we analyzed with an unpaired t test, and yet the results are quite different in terms of the df, t 
values, and p values (“Boys (M 4.51, SD 1.31) were significantly different from girls (M 2.94, 
SD 0.94) by a two-tailed unpaired t test (t(18) = 3.08, p < .01”). This is because the data in the 
first noun-verb study are correlated, the paired t test is able to give a more powerful result, 
giving a higher t value and lower p value (t(9) = 7.71, p < .001) than an unpaired t test would 
(t(18) = 3.08, p < .01). 
 In real life, you wouldn’t choose between the two types of t tests based on the correlation; 
you would choose between them based on your real-world situation. If your data come from 
samples that are independent in the real world (like unrelated boys and girls), choose the 
unpaired test; if your data represent pairs of values (like the noun and verb responses where 
each pair comes from the same person), then choose the paired test. These fake examples are 
just meant to show the statistical logic behind this real-life logic. 
 
2.2.2 The paired t test in R 
 
 To do a paired t test in R, we just use the same t.test() function as before, but now set the 
parameter paired to TRUE. We don’t have to bother with var.equal, since that only applies 
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to unpaired t tests. Let’s try it on the R-friendly version of the last two fake data sets in 
NounsVerbs.txt: 
 
nv = read.table("NounsVerbs.txt",T) 
study3 = subset(nv, nv$Study==3) 
nouns3 = study3$Measure[study3$WordType=="Noun"] 
verbs3 = study3$Measure[study3$WordType=="Verb"] 
study4 = subset(nv, nv$Study==4) 
nouns4 = study4$Measure[study4$WordType=="Noun"] 
verbs4 = study4$Measure[study4$WordType=="Verb"] 
t.test(nouns3,verbs3,paired=T) # nouns3[i] & verbs3[i] both from Participant i 
t.test(nouns4,verbs4,paired=T) # compare results with Excel 
 
 Here are R’s text reports for the more-correlated and less-correlated data sets, respectively: 
 
        Paired t-test 
 
data:  nouns3 and verbs3 
t = 7.7077, df = 9, p-value = 2.976e-05 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 1.109642 2.031569 
sample estimates: 
mean of the differences  
               1.570605 
 
        Paired t-test 
 
data:  nouns4 and verbs4 
t = 2.7228, df = 9, p-value = 0.0235 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 0.265729 2.875482 
sample estimates: 
mean of the differences  
               1.570605 
 
 One difference you might notice from Excel’s report tables is that R only gives us the 
mean of the differences, not the two sample means. This is because the null hypothesis tested 
by the paired t test is subtly different from that tested by the unpaired t test. Again, linguists 
should be well qualified to understand the difference, since it has to do with scope. Namely, 
while the unpaired t test tests the null hypothesis that the difference between the sample means 
is zero (or some other specific value), the paired t test tests the null hypothesis that the mean 
of the paired differences is zero (or some other specific value). That is, the unpaired t test tests 
H0: difference(means) = 0, whereas the paired t test tests H0: mean(differences) = 0. 
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 To end this section, let’s fake some new data where each pair shows a difference of 10 
but each set has variance of 100 (i.e., SD = 10), then compare unpaired and paired t tests, just 
to show that the latter is statistically more powerful. Try it! 
 
fakeA = rnorm(5,sd=10) # Your fake data will be different from mine 
fakeB = fakeA + 10 # So mean(fakeB) = mean(fakeA) + 10, and sd = 10 (try it!) 
cor(fakeA,fakeB) # Perfectly correlated 
t.test(fakeA,fakeB,var.equal=T) # Unpaired t test: may not be significant 
# Note: above WILL be significant around every 10-20 tries: can you guess why? 
t.test(fakeA,fakeB,paired=T) # Paired t test: sd(D) = 0, so can't run the test 
fakeB = jitter(fakeB) # jitter adds a small amount of noise 
cor(fakeA,fakeB) # Highly correlated, but not perfectly 
t.test(fakeA,fakeB,paired=T) # Paired t test: ridiculously significant! 
 
 So our fake examples show that the paired t test is more powerful if the data come in 
correlated pairs, and the unpaired t test is more powerful if the samples are independent. This 
is just as we would hope for two tests designed for precisely these two different situations. In 
actual practice, you can’t switch between tests on the same data set, as I’ve been doing with 
these fake examples: that would be cheating, just as much as switching from two-tailed to one-
tail p values would be. Instead, as I noted earlier, you have to decide which type of test to use 
ahead of time, based solely on the real-world situation. 
 
2.3 More about the math of t tests 
 
 Are you satisfied with what you’ve learned so far in this chapter? I hope not! You 
shouldn’t just assume that your computer is some kind of magic genie that automatically tells 
you the truth. You need to understand what it’s doing in order to know whether the results it 
gives you are believable. Less philosophically, you also need to know enough about what the 
“right” statistics look like to be able to detect when you’ve accidentally done them wrong (e.g., 
by clicking the wrong button in Excel), or even to detect when a published paper made a 
statistical error (accidentally or for more evil reasons). So once again, we have to take a little 
swim in the lovely but mysterious sea of mathematics. 
 
2.3.1 How the unpaired t test works 
 
 What an unpaired t test is actually asking about is what the observed difference in our 
sample means implies about the believability of the null hypothesis that this difference is zero. 
Since we have two samples, with means of M1 and M2, what we want to know is whether the 
difference between these two means is too large to have come from two populations with means 
μ1 and μ2 that are actually identical. 
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 The key insight is that we can address this issue by taking one tiny step up the ladder of 
mathematical abstractness. Just as in the one-sample t test we want to know if our observed 
sample mean is an outlier in the null distribution of sample means, we can now think of our 
observed difference in the two sample means (i.e., M1 - M2) is just one point in an imaginary 
distribution of all the differences of any two sample means: the so-called sampling 
distribution of the differences between means (ugh, what a name). This is exactly the same 
trick we used before when we introduced the Central Limit Theorem, and because of this 
theorem, this new distribution also has the shape of the t distribution, so a variation on the one-
sample t test can be used to check hypotheses about its mean. Wow!!!! 
 In practical terms, this insight tells us that we can take the one-sample t test formula that 
we used before, and replace the old one-sample mean M with our new difference between 
sample means M1 - M2, and likewise replace the single null population mean μ with the 
hypothesized difference between population means μ1 - μ2. Since your null hypothesis is almost 
always H0:μ1=μ2 (i.e., that the two population means are the same), you can make it even 
simpler and just use 0 for μ1 - μ2. 
 So conceptually the formula for the unpaired t test (testing H0:μ1=μ2) is as follows, where 
SE stands for standard error, which (as you remember) is the standard deviation of the 
sampling distribution. Thus this t formula is just a variation on our previous formula, which 
turn was based on the one-sample z formula, which was based on the ordinary z score (mean 
difference divided by standard deviation), which was just a way to standardize our actual values 
to fit into a universal distribution by shifting the center to zero and dividing away the spread. 
It’s all connected! 
 

Unpaired t test formula testing H0:μ1=μ2:  𝑡𝑡 = 𝑀𝑀1−𝑀𝑀2
𝑆𝑆𝑆𝑆

 

 
 The only tricky part is how to compute SE here. Remember that for the one sample t test, 
the sampling distribution involved sample means, so the true value of SE is σM (the standard 
deviation of the sampling distribution of sample means), which can be estimated using s/√n. 
But now we’re dealing the sampling distribution of the differences between sample means, so 
we have two sample sizes (n1 and n2) and two sample standard deviations (s1 and s2). 
 Fortunately, through the Magic of Mathematics (mainly probability theory and algebra), 
it turns out that the standard error we want is directly related to the estimated standard error for 
each sample: s1/√n1 and s2/√n2. The math is especially simple if the two samples are the same 
size: n1 = n2. It’s even simpler if we also assume that the sample standard deviations s1 and s2 
are both estimates of exactly the same population standard deviation, i.e., that σ1 = σ2. This is 
what Excel and R are talking about in the version of the unpaired t test that we introduced 
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above (with 假設變異數相等 and var.equal=T; remember that variance is just the square of 
standard deviation, so if the standard deviations are the same, so are the variances). 
 Starting with the simplest case, where the sample sizes are the same and we assume that 
the population variances are the same too, we can test the null hypothesis that H0: μ1 = μ2 using 
the following formula. 
 

Simplest version of unpaired t value: 𝑡𝑡 = 𝑀𝑀1−𝑀𝑀2

�𝑠𝑠1
2

𝑛𝑛1
+𝑠𝑠2

2
𝑛𝑛2

 {H0:μ1= μ2; assume n1 = n2 & σ1 = σ2} 

 
 As a review, compare this to the explicit version of the one-sample t test formula (with 
SE spelled out as s/√n = √(s2/n)), for H0: μ1 = 0. Pretty similar, right? 
 

One-sample t formula:  𝑡𝑡 = 𝑀𝑀
𝑆𝑆𝑆𝑆

= 𝑀𝑀
𝑠𝑠
√𝑛𝑛

= 𝑀𝑀

�𝑠𝑠
2
𝑛𝑛

 

 
 Since we’re talking about the family of t distributions, to get the p value from this t value 
we also need to know the degrees of freedom defining the t distribution. So what is the 
appropriate df? It’s not entirely arbitrary; remember that df stands for “degrees of freedom”, so 
it’s supposed to represent the number of values that aren’t fixed by our sample, including the 
values that we have to guess or assume. How many values are we estimating here? Well, if in 
the one-sample t test we assumed one value (σ = s), by the same logic, here we should be 
assuming two: σ1 = s1, and σ2 = s2. That turns out to be the right logic: df = (n1 - 1) + (n2 - 1) = 
n1 + n2 - 2: 
 
Degrees of freedom for unpaired t test: df = n1 + n2 - 2 
 
 Let’s try out our newly learned knowledge on another data set. It’s phonetics again, if 
that’s OK with you. Let’s start with Excel, where the file we want is voweldurationsExcel.txt. 
This contains (fake) durations in milliseconds for a random sample of productions of /i/ and 
/u/. The two samples are independent and the same size (n1 = n2 = 24), and for now we’ll 
assume they have equal variance (s/i/ = 48 ms, s/u/ = 41 ms, which seem sort of close), so the 
above formula seems appropriate. (Note that in my reports here, I’m rounding the values to the 
closest millisecond, since the original durations also only had one-millisecond precision. For 
the real calculations in Excel and R I’ll use the “raw” values, without any rounding.) 
 Are the means significantly different? Well, M/i/ = 309 ms and M/u/ = 292, which also 
seem pretty close (only 17 ms apart), especially given how wide the distributions are (as 
measured by their SDs). Let’s see what an unpaired t test says. 
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 Just to get a sense for how it works, let’s do the calculations step by step. If the /i/ values 
are in A2:A25 and /u/ values are in B2:B25, we can make the following computations: 
 
D2 (difference in means): =AVERAGE(A2:A25) - AVERAGE(B2:B25) 
E2 (SD for /i/): =STDEV(A2:A25)  # or =STDEV.S(A2:A25) 
F2 (SD for /u/): =STDEV(B2:B25)  # ditto 
E3 (n for /i/):  =COUNT(A2:A25) 
F3 (n for /u/):  =COUNT(B2:B25) 
D4 (SE):  =SQRT(E2^2/E3 + F2^2/F3) 
E4 (t value): =D2/D4 
D5 (df value): =E3 + F3 - 2 
D6 (two-tailed p value): =T.DIST(-ABS(E4), D5, TRUE) 
 
 Unsurprisingly, it’s not significant: t(46) = 1.33, p = .19. 
 You can do the same step-by-step computations in R, using voweldurationsR.txt, which 
has the same (fake) data formatted in a more R-like way (look inside to see): 
 
vowels = read.delim("voweldurationsR.txt") 
i = vowels$Duration[vowels$Vowel == "i"] # This saves space below 
u = vowels$Duration[vowels$Vowel == "u"] # Do NOT attach(vowels) - see why? 
meandif = mean(i) - mean(u) 
sdi = sd(i) 
sdu = sd(u) 
ni = length(i) # Remember "length" counts because R treats variables like vectors 
nu = length(u) 
SE = sqrt(sdi^2/ni + sdu^2/nu) 
tval = meandif/SE 
dfval = ni + nu - 2 
pval = 2*pt(-abs(tval), dfval) 
pval # 0.1907439, same as before. 
 
 Feel free to compare these results with what you get with Excel’s Analysis ToolPak or 
R’s t.test(var.equal = T) functions. I’ll wait. 
 What if your sample sizes aren’t the same? The math gets a bit more complex, since for 
reasons beyond the scope of this book (ahem), using different sample sizes means that SE 
cannot be computed from separate s1 and s2 values, as in the above formula. Instead the 
individual variances s1

2 and s2
2 need to be merged into the pooled (整合) variance sp

2, which 
represents our best estimate of σ1

2 =σ2
2. The simplest way to show how this works is to revive 

the notion of sum of squares (SS) that we last mentioned a few chapters ago, when introducing 
SD the first time: 
 
Sum of squares for unpaired t test:  SS = Σ(x-M)2 
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 Then we can express the variance of each sample using its SS like so (note that this formula 
is just the square of the sample standard deviation, where df = n -1): 
 

Sample variance:  𝑠𝑠2 = ∑(𝑥𝑥−𝑀𝑀)2

𝑛𝑛−1
= 𝑆𝑆𝑆𝑆

𝑑𝑑𝑑𝑑
 

 
 The pooled variance in the unpaired t test below looks very similar to the above formula 
(and you should also be able to see that the overall df is still n1 + n2 - 2): 
 

Pooled variance in unpaired t test:  𝑠𝑠𝑝𝑝2 = 𝑆𝑆𝑆𝑆1+𝑆𝑆𝑆𝑆2
𝑑𝑑𝑑𝑑1+𝑑𝑑𝑑𝑑2

 

 Hm, pooled variance... where have we seen that term before...? Ah yes, in Excel’s report 
for the unpaired t test! In the original Boys vs. Girls data set, Excel said the pooled variance 
(“Pooled 變異數”) was around 1.2966. Let’s see if we can recalculate this ourselves (I’ll do it 
in R, but feel free to try it in Excel too): 
 
# Reload everything, in case you lost it 
bg = read.table("BoysGirls.txt",T) 
study1 = subset(bg, bg$Study==1) 
boys1 = study1$Measure[study1$Gender=="Boy"] 
girls1 = study1$Measure[study1$Gender=="Girl"] 
# Calculate pooled variance, step by step 
SS.boy = sum((boys1-mean(boys1))^2) 
SS.girl = sum((girls1-mean(girls1))^2) 
df.boy = length(boys1) -1 
df.girl = length(girls1) -1 
var.pooled = (SS.boy + SS.girl)/(df.boy + df.girl) # Compare with the Excel report 
 
 So now all we do is plug this pooled variance into our unpaired t test formula, using sp

2 to 
replace both s1

2 and s2
2: 

 

More general version of unpaired t value: 𝑡𝑡 = 𝑀𝑀1−𝑀𝑀2

�𝑠𝑠𝑝𝑝
2

𝑛𝑛1
+
𝑠𝑠𝑝𝑝2

𝑛𝑛2

 {H0: μ1 = μ2; assume σ1 = σ2} 

 Try it out! 
 
M.boy = mean(boys1) 
M.girl = mean(girls1) 
n.boy = length(boys1) 
n.girl = length(girls1) 
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SE = sqrt(var.pooled/n.boy + var.pooled/n.girl) # The denominator in the equation 
tval = (M.boy - M.girl)/SE # Compare with Excel or R report 
dfval = n.boy + n.girl - 2 # Compare with Excel or R report 
pval = 2*pt(-abs(tval), dfval) # Compare with Excel or R report 
 
2.3.2 Testing for variance differences 
 
 Of course, in this complex world of ours, there is no guarantee that two independent 
samples happen to come from populations with identical variance (they’re independent, after 
all). If they don’t, we’ll need to generalize the t formula again. Before telling you how to do 
this, however, we first have a more fundamental question: How can we tell if our samples come 
from populations with different variances? 
 Note that the above formulas assume σ1

2 = σ2
2, but this is a claim about those abstract, 

unreachable, idealized populations, not the concrete samples that we can directly observe. Our 
observed s1

2 and s2
2 values are merely estimates of σ1

2 and σ2
2, so it is quite possible for the 

sample variance values to be different, but not different enough for us to reject the null 
hypothesis that H0: σ1

2 = σ2
2. 

 What we need is a genius to come along to tell us how to test a new type of null hypothesis, 
one that relates to variances, not to means. Luckily for us, such a genius already came along a 
long time ago: that Fisher guy again. He invented something now called the F test (or variance 
test, in this particular use of it), in his honor (capital-F for “Fisher”). 
 Just as t tests use t distributions, the F test uses another kind of distribution called the F 
distribution. In later chapters we’ll see that a version of the F test is crucial for doing ANOVAs 
(remember “VA” means “variance”). That’s why reports of an ANOVA always say something 
like “F(1, 29) = ...”. So please rest assured that this section is not a waste of time; you’ll 
definitely be seeing this F thing a lot later on. 
 The F distribution describes the ratios of two variances. This means that the F test has the 
simplest formula in all of statistics: just divide one variance by the other. When testing for the 
difference in variance between two samples, you divide them like this: 
 

F formula comparing two sample variances:  𝐹𝐹 = 𝑠𝑠12

𝑠𝑠22
 

 
 Since the number at the top of this ratio (i.e., the numerator 分子) is a square, and so is 
the number at the bottom of this ratio (i.e., the denominator 分母), F can never go below zero, 
but there’s no upper limit (as when dividing a huge variance by a tiny one). Thus the family of 
F distributions is not symmetrical like the normal distribution or the family of t distributions, 
but is instead highly skewed, as I’ll show you in a moment. 
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 Like t distributions, your specific F distribution depends on the df (related to n = sample 
size). But since F is defined by two variances in two different places in the F formula, you need 
two df values, not just one. In the type of F test we’re doing here, df1 = n1 – 1 and df2 = n2 – 1, 
just as for one-sample t tests: 
 
Degrees of freedom for F test:  df1 = n1 – 1   df2 = n2 – 1 
 
 R has the same type of function family for F distributions as for lots of other distributions, 
this time all with names ending in the lower-case letter “f” (cf. “t” for t distributions, “norm” 
for the normal distribution, “binom” for the binomial distribution, and “unif” for the uniform 
distribution). So p values can be computed with the pf(F, df1, df2) function, and we can make 
density plots with the help of the df(F, df1, df2) function (note: df() does not stand for degrees 
of freedom here!). Similarly, you can compute p values in Excel using =FDIST(F, df1, df2). 
 Before looking at the p values more carefully, let’s draw a picture of a few F distributions, 
as shown in Figure 2 (remember that line type lty=1 is a solid line, lty=2 is a dashed line, line 
width lwd=1 is a thin line and lwd=2 is a thick line). Notice how the tails, especially on the 
right, get thinner as the sample size (and thus df) goes up, which as with the t test, implies that 
it’s easier to get a significant result (greater statistical power) in a larger sample (assuming the 
null hypothesis is false). 
 
plot(function(x) {df(x, df1=5, df2=5)}, xlim=c(0,3), ylim=c(0,1), ylab = "", xlab = "") 
plot(function(x) {df(x, df1=5, df2=10)}, xlim=c(0,3), add=T, lty=2) 
plot(function(x) {df(x, df1=10, df2=5)}, xlim=c(0,3), add=T, lwd=2) 
plot(function(x) {df(x, df1=10, df2=10)}, xlim=c(0,3), add=T, lty=2, lwd=2) 
legend("topright", lty=c(1,2,1,2), lwd = c(1,1,2,2), 
 legend=c("df1=5, df2=5", "df1=5, df2=10", "df1=10, df2=5", "df1=10, df2=10")) 

 
Figure 2. Some F distributions 
 
 Note also that as the sample sizes get bigger (i.e., with larger df values), the mode moves 
towards the right and the right tail gets thinner. You might think, then, that as the sample sizes 
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move to infinity, the F distribution will turn into the normal distribution, just like the t 
distribution does. You would be wrong, though, because the normal distribution has no lower 
end, while the F distribution can’t go below zero; the mode of the F distribution also gets closer 
to 1, not 0 as for the standard normal distribution. However, as we’ll discuss more when we 
get to ANOVA, the F distribution is indeed related to the normal distribution in another way. 
Namely, the t value that you compute in a t test is related to the F value that you compute in 
ANOVA, in that t(df)2 = F(1,df), and you’ll get exactly the same p values too: t tests are just a 
special case of ANOVA! 
 How do we actually compute p values from F distributions? Confusingly, while the R 
command pf() is consistent with pnorm() and pbinom() in giving the area to the left of the F 
value (cumulative probability, remember?), the Excel function =FDIST() gives the area to 
the right of the F value, which is thus unlike Excel’s other functions =NORMSDIST() and 
=BINOMDIST(). Thus pf(F, df1, df2) = 1 - FDIST(F, df1, df2). 
 Does this asymmetry of the F distribution mean that we should use the one-tailed (right-
sided) p value in an F test? Not at all. The asymmetry comes from how ratios work: in s1

2/s2
2, 

a big s1
2 will spread F out infinitely to the right, but a big s2

2 will squish F between 1 and 0. 
We can’t know ahead of time whether s1

2 or s2
2 will be bigger, though, so the most reasonable 

null hypothesis is still the nondirectional H0: σ1
2 = σ2

2. All the asymmetry means is that we 
cannot compute the two-tailed p value simply by doubling either of the one-tailed p values. 
Instead, we have to add the two p values together. I’ll give an example of this shortly. 
 The easiest way to do an F test in Excel is to choose the appropriate tool in the data 
analysis toolbox (「F 檢定：兩個常態母體變異數的檢定」). When selecting the ranges for 
your two samples, Excel will assume that you want the first one to be at the top of the F ratio, 
and the second one to be at the bottom. Thus if the first sample has a larger variance than the 
latter, F will be higher than 1, and if it’s very much higher, you’ll get a p value representing 
the area of the tail to the right, which will thus be very small. If, however, the first sample has 
a much smaller variance than the second, you’ll get a very tiny F value - but you’ll still get the 
same small p value, since it’s still measuring the tail on the right. 
 Try it on the first data set (boys and girls). If you did it right, you could report the results 
like so: F(9, 9) = 1.94, p = .169. Notice how you have to report both df values, in the order 
numerator (top of ratio) before denominator (bottom of ratio). I got an F value above 1, because 
I selected Boys as the first sample and Girls as the second sample, and the first has a higher 
variance than the second. If I select the samples the other way around, I get this result: F(9, 9) 
= 0.52, p = .169. Note that the two Fs are inverses: 1.94 = 1/0.52, and vice versa. So as I said, 
if you put the small variance on top, you get a lower F value (below 1), but the p value is 
exactly the same. 
 The latter analysis may confuse your readers, though, since in most statistical tests, higher 
test statistic values mean lower p values. We’ve already seen this for the binomial test, the z 
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test, the one-sample t test, and both the unpaired and paired t tests. So when running a variance 
test, I would recommend ordering your two samples so that you divide the larger variance by 
the smaller one. This way a higher F implies a lower p.  
 Let’s make sure this p value is right. As noted above, Excel gives you the one-tailed (right-
tailed) p value for the F distribution, as is made explicit in the statistics report table produced 
by the F test tool. Thus you can get exactly the same p value in this report table by using the 
=FDIST(F, df1, df2) function, where you select the report table cells that contain F, df1, and 
df2. Try it! 
 Anyway, we just ran an F test to check if the variances for Boys and Girls in the first data 
set are significantly different, and we got p = .169 > .05. What can we do with this information? 
Technically, nothing: it’s a null result, and so it’s possible that the null hypothesis is still 
actually false, but our test just wasn’t powerful enough to reject it. In other words, maybe we 
have made a Type II error. But at least this null result tells us that we have no motivation to 
reject the null hypothesis about the equal variances, and so we may as well stick with the 
version of the unpaired t test that assumes this. 
 The situation is quite different for the second unpaired data set, also about boys and girls 
(the one we’ve ignored through the whole chapter so far). Doing an F test here, we get F(9, 9) 
= 0.099, p = .001, or with the samples turned around so “bigger F” implies “smaller p,” which 
is more intuitive, we get F(9, 9) = 10.03, p = .001. (Again, note that 0.099 = 1/10.03.) So in 
this case, we are justified in rejecting the null hypothesis that the two population variances are 
the same, and so maybe we should think about using a more general version of the unpaired t 
test that doesn’t depend on this assumption. We’ll learn how to do this in the next section. 
 R also has a built-in F test function for comparing variances, called var.test(). Like 
Excel’s F test tool, it computes F by dividing the variance of the first sample by that of the 
second, so if you want big F to imply small p, you should make sure you put the higher-variance 
sample in first. For example, this is what I would do for the first data set, where Boys has higher 
variance than Girls (you should try it too): 
 
var.test(boys1,girls1) # Search for "boys1" above to reload if you lost it 
 
 R’s text report tells us the following: F = 1.9368, num(erator) df = 9, denom(inator) df = 
9, p = .339. Unlike Excel’s F test tool and the =FTEST() function, it doesn’t give p = .169 
because var.test(), like t.test(), gives you the two-tailed p by default (just as with t.test(), you 
can change the default tail setting by changing the alternative argument from the default value 
"two.sided" to "less" or "greater", but we won’t bother with that). Notice also that .339 ≠ 
2×.169, since the F distribution isn’t symmetrical. Instead, the p value computed by var.test() 
is the sum of the left tail for s2

small/s2
big plus the right tail for s2

big/s2
small: 
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Fval.bs = var(boys1)/var(girls1) # Big above small 
Fval.sb = var(girls1)/var(boys1) # Small above big 
F.left = pf(Fval.sb,9,9) # Area of left tail (small/big gives smaller F value) 
F.right = 1-pf(Fval.bs,9,9) # Area of right tail (= 1 minus area to left of bigger F value) 
F.left + F.right # There's our 0.3389936 
 
 Using var.test() on the second set of boy/girl data confirms their unlike variances: 
 
study2 = subset(bg, bg$Study==2) 
boys2 = study2$Measure[study1$Gender=="Boy"] 
girls2 = study2$Measure[study1$Gender=="Girl"] 
var.test(boys2,girls2) # F(9,9) = .1, p = .002 
 
 Now, since Excel gives you a one-tailed p value for the F variance test and R gives you a 
two-tailed p value, which should you use and report? Remember that the higher the p value, 
the less the risk of a Type I error (thinking there’s a pattern when there really isn’t), but the 
greater the risk of a Type II error (thinking there’s no pattern when there really is). Meanwhile, 
however, remember that it’s almost always better to use a two-tailed test, so nobody can accuse 
you of cheating. In this case, neither Type I or Type II errors are much to worry about, since 
even the ordinary unpaired t test gives pretty good results, even if its assumption of equal 
population variances is not true. For consistency, I would recommend reporting R’s two-tailed 
p value for the F variance test, but if you decide to use Excel’s test instead, just tell your readers 
that it’s a one-tailed test. 
 
2.3.4 Welch's t test (unpaired t test not assuming equal variances) 
 
 Now that we know that the second boy/girl data set involves samples with significantly 
different variances, how could we improve the unpaired t test to optimize its accuracy 
(balancing Type I and Type II error risk) in this kind of situation? An otherwise obscure 
statistician named B. L. Welch (no Wikipedia article!), worrying about this in the late 1940s, 
came up with an ugly but now standard solution. The simplest name for the solution is Welch's 
t test, but it’s also called the unpaired t test not assuming equal variances, or the 
heteroscedastic (異方差的) t test. You may remember that “hetero” means “different” (as in 
“heterosexual”), but you probably forgot that “scedastic” means “dispersion”. So 
heteroscedastic basically means “different variance”. By contrast, the unpaired t tests we have 
doing so far are homoscedastic. 
 This may seem like a picky little issue, but we’ve already seen that homoscedasticity is 
also an assumption of Pearson’s correlation and regression: to get valid p values, we have to 
assume that the variance remains constant all along the scatter plot. The issue will also return, 
in a somewhat different form, when we get to ANOVA. 
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 Welch’s discovery was that we can deal with heteroscedasticity in an unpaired t test by 
changing the formula for df, rather than the formula for t. In fact, the formula for t in this case 
is exactly the same as for the simplest version of the unpaired t test (see, e.g., Everitt & Hay, 
1992, or even Wikipedia). That is, you don’t use pooled variance, since you can’t rely on the 
assumption that the population variances are the same. 
 Welch’s trick is to reduce the size of the df value, so that you use a thicker-tailed t 
distribution, which indicates that you’re less sure of where the population mean actually is. 
This is similar to the trick we used when we moved from the z test to the t test: the formulas 
are actually identical, but we shifted to a distribution with thicker tails, since we had to pretend 
that the population variance was the same as our sample variance. Now we’re pretending that 
the difference between the two sample variances doesn’t matter. In both cases, we “punish” 
ourselves for this false assumption by spreading out our uncertainty in thicker-tailed 
distributions, which raises the p values (lessening our risk of Type I errors). 
 The specific amount you reduce df depends not just on the sample sizes, but the sample 
variances as well, calculated using the so-called Welch correction. Somewhat annoyingly, this 
correction usually produces a weird-looking df that is not a whole integer. You can see the 
incredibly ugly formula in Everitt & Hay (1992, p. 60), or in Wikipedia’s article on this test, 
but I’ll spare your delicate eyes. 
 Excel computes Welch’s t test when you choose the Analysis ToolPak tool 「t 檢定：

兩個母體平均數差的檢定，假設變異數不相等」 (t-Test: Two-Sample Assuming Unequal 
Variances). Note that Excel’s name has the wrong scope: Welch’s t test does not assume that 
the variances are unequal, but instead assumes nothing about the variances at all. So more 
properly, Excel should call it 「t 檢定：兩個母體平均數差的檢定，不假設變異數相等」: 
it should be not(assume(equal variance)), rather than assume(not(equal variance)). Another 
thing to note about Excel’s implementation of Welch’s t test is that it rounds the weird df given 
by Welch’s correction to the nearest integer. 
 Let’s try it. Using the second set of unpaired data (which “failed” the F test), we get t(11) 
= 4.91, p = .0005. If we report this, we should explain that it’s heteroscedastic so people 
understand that unexpected df. Since the sample sizes are n1 = n2 = 10, the ordinary unpaired t 
test should give us df = n1 + n2 - 2 = 18, so your readers may be surprised to see df = 11 here, 
unless you tell them why. 
 If we use an ordinary (homoscedastic) unpaired t test on this data set, we get t(18) = 4.91, 
p = .0001. Thus the t value is the same, but the df value is higher, which makes the p value 
slightly lower (in this particular case there’s no practical effect, since it’s still significant). 
Similarly, we could use a heteroscedastic test on the first boy/girl data set (which “passed” the 
F test). With a homoscedastic test we got t(18) = 3.08, p = .006, but with a heteroscedastic test 
we get t(16) = 3.08, p = .007. Again the t values are the same, but since the df is lowered by 
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Welch’s correction, the p value is slightly higher (again it doesn’t make any practical difference 
in this particular case). 
 Now let’s see how R does it. Remember that unless you set equal.var = T, R’s t.test() 
function makes no assumption about the variances, so it performs Welch’s t test by default, 
and that’s what it tells you it’s doing in the text report. Note also that the weird df given by 
Welch’s correction is not rounded to a whole integer in R. And finally, notice that it names Mr. 
Welch personally (poor guy, with no Wikipedia article). 
 
t.test(boys2,girls2) # Use default setting (don't assume equal variance) 
 
        Welch Two Sample t-test 
 
data:  boys2 and girls2 
t = 4.9078, df = 10.775, p-value = 0.0004948 
alternative hypothesis: true difference in means is not equal to 0  
95 percent confidence interval: 
 0.8416934 2.2168454  
sample estimates: 
mean of x mean of y  
 4.469680  2.940410 
 
 Just as in these fake examples, it usually doesn’t matter which version of the unpaired t 
test you use, unless your p value happens to be very close to .05 on one side or the other. 
Moreover, as I’ve mentioned before, parametric tests are robust, which means that you can 
violate their assumptions and they’ll still give you pretty reliable inferences (see Glass, 
Peckham, & Sanders, 1972; Rasch & Guiard, 2004). In the case of the ordinary unpaired t test, 
this is especially true if your sample sizes are large and/or pretty similar. 
 For generality, though, R’s t.test() function makes Welch’s t test the default. This makes 
it useful when you’re checking your own data during the course of your research, without 
having to worry about possible troubles with variance. Nevertheless, Welch’s t test is less 
powerful, since it ignores part of your data (i.e., it doesn’t care if your samples really have the 
same variance or not), and it also gives you that weird df value, so I would recommend using 
the ordinary unpaired t test for reports. Only if your sample variances are very different might 
you want to please critics who might otherwise suspect that you purposely ignored the variance 
difference to get a significant result. Welch’s t test has a lower risk of Type I errors, so if it’s 
still significant that way, your critics might be mollified. 
 
2.3.4 How the paired t test works 
 
 After all the math stress of the unpaired t tests and the variance test, here’s some good 
news: the math for the paired t test is super simple! Why? Well, since the two samples are 
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paired, this time the null hypothesis really concerns the differences between the pairs. That is, 
you’re not looking at mean(x1) - mean(x2), but rather at mean(x1 - x2), which we can symbolize 
as MD (D for “difference”). The null hypothesis claims that the population associated with this 
sample of differences has some fixed “boring” mean, so it turns directly into a one-sample t 
test, like so: 
 

Paired t test value:  𝑡𝑡 = 𝑀𝑀𝐷𝐷−(𝜇𝜇1−𝜇𝜇2)
𝑆𝑆𝑆𝑆

= 𝑀𝑀𝐷𝐷−𝜇𝜇𝐷𝐷
𝑆𝑆𝑆𝑆

 

 
 As with the other t tests, the “boring” mean of the null hypothesis is usually taken to be 
zero (e.g., the null hypothesis is that noun and verb responses will be the same, so their 
differences in the null population is zero), making the null hypothesis, formally speaking, look 
like this: H0:μD = 0. So the usual version of the paired t test formula is like so: 
 

Paired t test value (H0:μD = 0):  𝑡𝑡 = 𝑀𝑀𝐷𝐷−𝜇𝜇𝐷𝐷
𝑆𝑆𝑆𝑆

= 𝑀𝑀𝐷𝐷
𝑆𝑆𝑆𝑆

 

 
 Just as in the ordinary one-sample t test, we don’t have to estimate anything except σ, so 
we only have to subtract 1 to get the df, so df = n – 1 (note that due to the pairing of the data, n 
= n1 = n2). 
 
df for paired t test:  df = n - 1 
 
 And the math just keeps getting easier: the estimated standard error of the difference 
between paired sample means is based on the standard deviation of the differences, so it can 
be estimated just as in the one-sample t test too: 
 

Standard error for paired t test:  𝑆𝑆𝑆𝑆 = �𝑠𝑠𝐷𝐷2

𝑛𝑛
= 𝑠𝑠𝐷𝐷

√𝑛𝑛
 

 
 Let’s check if this formula gives us the correct t value for the first noun-verb study: 
 
# Start over, in case you lost the data 
nv = read.table("NounsVerbs.txt",T) 
study3 = subset(nv, nv$Study==3) 
nouns3 = study3$Measure[study3$WordType=="Noun"] 
verbs3 = study3$Measure[study3$WordType=="Verb"] 
tval1 = t.test(nouns3,verbs3,paired=T)$statistic # This extracts just the t value 
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# Recalculate using above formula 
Difs = nouns3-verbs3 # R knows to subtract vectors element by element 
MD = mean(Difs) 
SD = sd(Difs) 
SE = SD/sqrt(length(nouns3)) 
tval2 = MD/SE 
tval1 == tval2 # TRUE! 
 
2.3.5 t tests and regression 
 
 Before we climb out of the sea of mathematics, there’s one more crucial point to make, in 
fact the same point we made in the previous chapter, namely: everything is regression. 
Unpaired and paired t tests are actually just special cases of linear regression, and this 
connection is made explicit in R syntax. 
 Remember that R prefers data to be arranged so that each row is a separate data point, and 
each column describes something about this data point, including the dependent measure and 
the factor(s) defining it. So in the BoysGirls.txt file, the key values are in the dependent 
variable Measure, whereas the independent variable Gender defines whether the measure 
comes from a boy or a girl (each row is a different person); in NounsGirls.txt, the random 
variable Participant defines the pairs, the independent variable WordType defines whether 
the measure comes from a noun or a verb, and again Measure is the dependent variable. 
Although this format is different from some other statistics programs, there’s a very logical 
reason for it: R prefers to treat your data as a kind of Y ~ X model, where Y is the dependent 
measure and X is/are the independent variable(s), possibly with random variables in there too. 
 In fact, if your data set is arranged the right way, the t.test() function lets you analyze it 
using the formula notation (with that ~ symbol), instead of listing the two values separately. 
So instead of t.test(A, B), you can write something like t.test(Y ~ X). Try it for our boy/girl 
and noun/verb data below, and you’ll see that both syntactic forms give you identical results: 
 
t.test(boys1, girls1) # Unpaired (Welch's) t test 
t.test(Measure ~ Gender, data=study1) # Exactly the same thing 
# The following only work if Participants are in same order for nouns and verbs: 
t.test(nouns3, verbs3, paired=T) # Paired t test 
t.test(Measure ~ WordType, data = study3, paired = T) # Exactly the same thing 
 
 If you ever need to do a one-sample t test (outside of this book’s mathematical 
explanations, that is), you can use the t.test() function for that too. Note that Y~1 is how R 
represents a model where there are no predictor variables: the 1 represents the regression 
intercept (which makes sense if you think about regression in terms of matrix mathematics, but 
forget about that). In the examples below the regression notation isn’t doing anything useful, 
but this won’t be the last time we see the 1-as-intercept trick in this book. 
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t.test(boys1) # One-sample t test for H0:mean(boys1) = 0 
t.test(boys1 ~ 1) # Exactly the same thing 
 
 By the way, the fact that R can run a t test in this way kind of falsifies the title I gave this 
chapter (“Comparing two continuous variables”), since it’s possible to see a t test as analyzing 
just one continuous dependent variable, with the “two” part coming from the categorical 
independent variable. 
 I mentioned in the last chapter that R uses the formula notation everywhere. In addition 
to lm(), xtabs(), and t.test(), the boxplot() function from a few chapters back also permits you 
to use the formula notation (try it!): 
 
boxplot(Measure~Gender, data=study1) # Sure looks like it should be significant 
 
 This formula notation is not just an arbitrary convention: t tests are, in fact, just a special 
case of linear regression. In the case of unpaired (homoscedastic) t tests, the t.test() function 
gives exactly the same results as cor.test() or lm(), if you code your independent variable in 
terms of two numbers rather than in terms of character strings. For example, if you use 0 vs. 1 
(e.g., Boy = 0, Girl = 1), this is called dummy coding: 
 
study1$Girlness = 1*(study1$Gender == "Girl") # New variable: change F/T to 0/1 
study1 # See? 
 
 Now we do an ordinary correlation predicting Measure from these 0s and 1s; this method 
is technically called a point-biserial correlation. Try out the following code, and note the 
similarities and differences in the results: 
 
cor.test(study1$Girlness, study1$Measure) # Note the df, t and p values 
summary(lm(Measure~Girlness,data=study1)) # Same df, t and p values 
summary(lm(Measure~Gender,data=study1)) # Same: lm() treats factors as dummy 
t.test(Measure~Girlness,data=study1,var.equal=T) # Same df, t and p values as above 
t.test(Measure~Girlness,data=study1) # Welch's t test works differently 
 
 Only Welch’s t test gives different df and p from Pearson’s correlation and regression, 
since unlike these tests it’s a heteroscedastic test. This shows that I wasn’t lying when I said 
that correlation and linear regression really do assume homoscedacity (equal variance across 
the whole range of data). 
 What about the paired t test? The link with regression is more subtle, but it’s still there, if 
only at a conceptual level. Namely, think in terms of the formula Y ~ X, where Y is the 
dependent variable (e.g., Measure in the noun-verb study) and the independent variable X uses 
dummy coding (e.g., 0 = Noun, 1 = Verb). Now imagine that the data are arranged in a kind of 
scatter plot, encoded as (x, y) points, so (0, y0) gives one of the values of Y when X = 0 (Noun) 
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and (1, y1) is the paired value for when X = 1 (Verb). What’s the slope between these two 
points? It’s the change in Y divided by the change in X, right? But that’s just y1-y0 divided by 
1-0, which is just the difference y1-y0 itself. And this is just the differences between paired data 
points used in the paired t test. So the differences in a paired t test are actually slopes! This 
insight, in turn, means you can do a one-sample t test on all of these slopes to see if they are 
significantly different from a flat horizontal line showing no effect of x on y (remember that 
for a horizontal line, slope = 0). Putting it symbolically: 
 

𝑏𝑏 (slope) =  
change in 𝑦𝑦
change in 𝑥𝑥

=
𝑦𝑦1 − 𝑦𝑦0
1 − 0

= 𝑦𝑦1 − 𝑦𝑦0 = 𝐷𝐷 (difference) 

 
 Unfortunately, this approach is merely conceptual; linear regression can’t actually 
compute a slope for just two points. Still, regression really is everywhere in statistics, and this 
link will provide us with several other useful tricks in later chapters. 
 
3. Effect size for t tests 
 
 We’ve been computing a lot of p values in this chapter. However, as we know, statistical 
significance isn’t the same as real-life significance: it’s quite possible to get a low p value for 
a very tiny effect. For this reason, many researchers today (including the American Psychology 
Association and the many journals influenced by the APA) emphasize that effect size should 
also be measured and reported, in addition to p values. 
 
3.1 The what and why of effect sizes 
 
 There are two very commonly used ways to measure effect size for t tests: a simple one 
for reports in the text, and a more complicated one that’s most often used for graphs. 
 The simple way of measuring effect size is Cohen's d (named after American statistician 
Jacob Cohen, 1923-1998, and the letter “d”, for “difference” maybe?). This uses the standard 
deviation as a measuring stick. If your effect is large relative to the variability in the population 
(as estimated from your sample and the specific statistical test you used), then this is a more 
meaningful result than if you had observed the same-sized effect in a more “noisy” situation. 
 Applying this logic, Cohen’s d is calculated as shown below for three types of t tests; note 
that the particular choice of standard deviation measuring stick is based on the particular t value 
formula used in the particular t test. By convention, d < .2 is taken as indicating a small effect 
and d > .8 indicates a big effect. 
 

Cohen’s d for one sample t test:  𝑑𝑑 = 𝑀𝑀−𝜇𝜇
𝑠𝑠
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Cohen’s d for unpaired (homoscedastic) t test: 𝑑𝑑 = 𝑀𝑀1−𝑀𝑀2
𝑠𝑠𝑝𝑝

 

Cohen’s d for paired t test: 𝑑𝑑 = 𝑀𝑀𝐷𝐷
𝑠𝑠𝐷𝐷

 

 
 While the base package in R doesn’t have a built-in function for computing the above 
equations, you can write your own function(s) based on the above formulas, or use the function 
cohensD() in the package lsr (for “Learning Statistics with R”; Navarro, 2014). Try it, and 
you’ll see that all of these analyses show quite large effect sizes (in fact, d > 1). 
 
library(lsr) # After you've installed it 
cohensD(boys1) # Cohen's d for one-sample t test assuming mu = 0 
mean(boys1)/sd(boys1) # Same result as above (try confirming below results too) 
cohensD(boys1,girls1) # Cohen's d for unpaired homoscedastic t test 
cohensD(Measure~Gender,data=study1) # Same result as above 
cohensD(boys2,girls2,method="unequal") # Cohen's d for Welch's t test 
cohensD(nouns3,verbs3,method="paired") # Cohen's d for paired t test 
 
 The more complex way to measure effect size, most often used in plots, is motivated by 
limitations with statistical hypothesis testing (i.e., computing p values). The first we’ve already 
mentioned: statistical significance isn’t the same as practical significance in the real world. But 
there are other limitations too (see, e.g., Loftus & Masson, 1994). One is that statistical software 
(and textbooks like mine) tend to give the impression that statistical hypothesis testing is a 
purely mechanical algorithm that somehow gives us direct access to the truth. Yet real science 
is messy, and is done by our messy human brains in discussions within a messy social world, 
so interpreting the mathematical results given by statistics is more effective if we have enough 
extra information to allow our messy brains to be flexible. Another limitation is that you can’t 
make a graph of a p value, and as I’ve repeatedly emphasized, people have a more intuitive 
sense about pictures than about numbers. 
 Most of these specific problems relate to a more fundamental issue. Namely, hypothesis 
tests like t tests give point estimates (點估計), not just those magical p values, but also for 
population values like the mean: a single number is offered as the best guess. Actually, since 
the sample mean is merely an estimate of the population mean, we also need to know how 
reliable this estimate is, in a practical, flexible, and intuitive way. Reporting the sample 
standard deviation, standard error (SE), and/or Cohen’s d may help express the variability and 
reliability of our point estimates, but by themselves, they are also just point estimates. 
 Putting all of this together, a standard response is to represent our confidence in a point 
estimate by putting the point within a range of values. This range is called a confidence 
interval (信賴區間), and the degree of confidence is expressed as a percentage. For example, 
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a 95% confidence interval represents a range of values where we can be 95% sure about the 
population mean (albeit in a somewhat confusing sense). 
 Confidence intervals? Yes, confidence intervals! I’m finally going to explain them! 
We’ve already seen Excel and R giving us information about confidence intervals in their 
outputs. So when you use Excel’s regression (迴歸) tool, the coefficients table includes 「下

限 95%」 and 「上限 95%」. Similarly, R’s cor.test(), t.test(), and even var.test() functions 
all report the “95 percent confidence interval” around their point estimates (i.e., around 
Pearson’s r, the mean difference, and the variance ratio, respectively). 
 Just as a smaller standard deviation means less variability, and a smaller standard error 
(SE) means less uncertainty about the population mean, so too the width of a 95% confidence 
interval shows how reliable our point estimate is. Specifically, a narrower 95% confidence 
interval provides more information than a wider 95% confidence interval. If this is not intuitive, 
think of this analogy: imagine hearing on the radio that “We are 95% certain that the escaped 
criminal is somewhere in Chiayi county” or that “We are 95% certain that the escaped criminal 
is somewhere in Chiayi city”. Which report provides more information? The one with the 
smaller range (Chiayi city), right? 
 Now what if we compare a 95% confidence interval and a 99% confidence interval for 
exactly the same data set. Which should be smaller? The answer is that a 95% confidence 
interval will be smaller. This may seem counterintuitive, but it may make more sense if you 
now imagine a 100% confidence interval. How wide would that have to be, to be sure that the 
“true” point estimate is definitely within it? If this estimate is on an infinitely long scale, as 
statistics generally assumes (remember that the tails of the normal distribution go off into 
infinity on both ends), then the only way to be 100% confident is if the confidence interval 
itself is also infinitely long! By the same logic, a 99% confidence interval will be wider than a 
95% confidence interval for the same data. 
 What do those percentages mean, exactly? It sounds like for a 95% confidence interval, 
the population mean has a 95% chance of being somewhere within it, right? Sadly, that is not 
what a confidence interval means, at least not in traditional (frequentist) statistics. Now pay 
close attention, and I’ll try to explain why. 
 Remember that in traditional inferential statistics, your sample is seen as just one of many 
(usually an infinite number of) possible samples from the same population, each sample with 
its own mean. You have to understand a 95% confidence interval within this sampling 
framework. If we take the 95% confidence interval calculated from our sample, and put a copy 
of it around the mean of every sample from the population (without changing the size of the 
interval), then 95% of these copies should contain the population mean. You might be able to 
see what I mean if you study Figure 3 for a while. 
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  Population value (e.g., μ) 
   
        95% confidence interval calculated from our sample 
 
95% 
 
          Other possible samples from population 
 
5% 
            Measurement scale 
 
Figure 3. What a confidence interval really is 
 
 Everybody finds this very confusing, since the logic seems backwards. Here’s what a 
statistician says about his reaction when he first learned this (Lee, 2004, p. xiii): 
 

When I first learned a little statistics, I felt confused, and others I spoke to confessed 
that they had similar feelings. [...] [T]he statement that a 95% confidence interval for 
an unknown parameter ran from -2 to +2 sounded as if the parameter lay in that 
interval with 95% probability and yet I was warned that all I could say was that if I 
carried out similar procedures time after time then the unknown parameters would 
lie in the confidence intervals I constructed 95% of the time.... 

 
 Lee (2004) is a book on Bayesian statistics, and indeed, this is another situation where 
Bayesian logic is actually more intuitive, since it doesn’t rely on the backwards logic of starting 
with the null population and then imagining that our observed sample was taken from it. As 
we’ll see at the end of the book, the Bayesian version of the confidence interval (sometimes 
called the highest density interval) works very much the way we wish that the frequentist 
confidence interval worked, but doesn’t. 
 
3.2 More about the math of confidence intervals 
 
 Since Bayesian statistics has not yet taken over the world, we have to learn how to 
compute the traditional confidence interval. The size and location of a confidence interval is 
based on some specific statistical hypothesis test, so the numbers you need to compute it are 
exactly the same as used in a hypothesis test, namely the sample mean, the standard error, and 
a test statistic (e.g., z or t or F). This makes the underlying logic not too different from Cohen’s 
d, except that now we’re dealing with an interval instead of a point estimate. 
 If you want a 95% confidence interval, that’s the same as setting the critical value (臨界

值) α = .05 (since .95 = 1 – .05). Similarly, a 99% confidence interval would set α = .01. (As 
usual, we’re talking about two-tailed tests here.) For example, for a 95% confidence interval 



Ch. 6: t tests and beyond 
 

28 

associated with a z test, we would use z95%crit = 1.96 (that’s the point where the areas beyond 
both tails add up to .05, remember?). Now all we have to do is flip the numbers around in the 
formula. For example, for the one-sample z test, the test statistic is calculated this way 
(remember?): 
 

z test statistic: 𝑧𝑧 = 𝑀𝑀−𝜇𝜇
𝑆𝑆𝑆𝑆

= 𝑀𝑀−𝜇𝜇
𝜎𝜎/√𝑛𝑛

 

 
 This time, however, instead of computing z, what we want is to estimate a range for µ. So 
we replace z with z95%crit and solve for µ (we get the “±” because we’re assuming a two-tailed 
test, where M might be bigger or smaller than µ). 
 
z test confidence interval: µ = M ± (z95%crit)(SE) = M ± (z95%crit)(σ/√n) = M ± (1.96)(σ/√n) 
 
 The formulas for confidence intervals all have basically the same form, regardless of the 
test they’re based on. For example, here’s how to compute the 95% confidence interval for a 
one-sample t test (as usual, you still must choose the right t distribution from the t family, here 
using df = n – 1). 
  
One sample t test confidence interval: µ = M ± (t(df)95%crit)(SE) = M ± (t(df)95%crit(s/√n) 
 
 Let’s try computing a confidence interval for the one-sample t test. Remember your sister, 
who might be a Martian in disguise? Here are the key values again: 
 
μ = 20 ms VOT for Martians 
n = 16 recordings of your sister 
df = n - 1 = 15 
M = 22 ms for your sister 
SD = 3 ms for your sister 
 
 Using these numbers, we can compute the 95% confidence interval for the population 
mean estimated with our sample as follows: 
 
µ = 22 ± (t(15)95%crit)(3/√16) = ... 
 
 What’s t(15)95%crit? Well, what t value on the t(15) distribution defines two tails that 
together have an area of .05? We’ve often used the p... family of functions (e.g., pt()) to get 
area from points, but remember that we also have q... functions (e.g., qt()) to get points from 
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areas (“q” for “quantile”). So the t value on the t(15) distribution that defines an area .025 to 
the left is the following: 
 
qt(p=0.05/2, df=15) # -2.13... 
 
 This is a negative number (do you remember why?), so the value we want to plug into the 
above formula is the absolute value (so we can apply ± to it): 
 
abs(qt(p=0.05/2, df=15)) # 2.13.... 
 
 If you think about, you should also be able to figure out why t(15)95%crit is bigger than 
z95%crit = 1.96. If you can’t, here’s why: the tails of the t distributions are fatter than tails of the 
normal distribution (especially when df is small), so you need to move further out (both ways) 
to shrink the total area of the tails down to just .05. If the sample is big, though, the t distribution 
becomes normal: 
 
abs(qt(p=0.05/2, df=1000)) # There's that 1.96... 
 
 Now that we have our critical value, we can finish the calculation as follows. Note how I 
cleverly exploited R’s love of vectors to put a vector inside qt(), so I could calculate both ends 
of the confidence interval at the same time: 
 
22 + qt(c(0.05/2,1-0.05/2),df=15)*(3/sqrt(16)) 
[1] 20.40141 23.59859 
 
 Did we do it right? Compare the above values with what you get automatically in the text 
report from t.test(): 
 
set.seed(19483) # So you match my specific random sample (remember?) 
sister = round(rnorm(n=16,mean=22,sd=3)) # Here, M = 22 & s = 3.03315 
t.test(sister,mu=20) # H0: mu = 20 
# 95 percent confidence interval reported by t.test: 
#  20.38375 23.61625  ...Slightly different from above since M != 22 & s != 3 
 
 Notice that the Martian mean of 20 is outside of the range of 20.40 to 23.60. Since our 
analysis shows that 95% of the confidence intervals of this size will contain the true population 
mean, we are justified in saying that your sister’s mean (22) is significantly different from the 
Martian mean (20). 
 Confidence intervals don’t just repeat the information given by a p value, however. For 
one thing, the size of a confidence interval is not related just to p, but also to the sample size. 
For example, suppose John and Mary each perform z tests on unrelated hypotheses involving 
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distinct populations that both happen to have σ = 10, and both get a p value of .04 (just barely 
significant). Now suppose that John’s sample size is 100, and Mary’s is 10. This means that 
the width of John’s 95% confidence interval is (2)(1.96)(10/√100) = 3.92 (do you see where I 
got this formula from?), while for Mary it’s (2)(1.96)(10/√10) = 12.40, over three times wider. 
So in order for Mary’s result to be significant, her sample mean must be much farther away 
from the hypothesized population mean than John’s sample mean. This makes her effect size 
more impressive, even though the significance values are identical. 
 
3.3 Plotting confidence intervals 
 
 The most common use for confidence intervals is in graphs. In fact, because of the relation 
between confidence intervals and hypothesis testing, a properly calculated confidence interval 
can visually express whether a specific statistical analysis is significant. In one sense, this is 
obviously very cool and useful. In another sense, though, it can be kind of a confusing mixture 
between two different functions of a graph (and different functions of statistics more generally): 
describing the data, versus drawing inferences from it. For this reason confidence intervals are 
easy to misuse in complex situations, and I will not discuss them in detail after this chapter. 
They’re very widely used, however, so at least I hope this brief discussion will give you a sense 
of where they come from. 
 Confidence intervals are often used to make error bars (誤差線) in graphs. Error bars 
can also be used to express different kinds of information about variability, including sample 
standard deviation (variability within your sample) and standard error (variability of your 
sample as a reflection of the population), but in these uses, the bars do not express effect size 
or statistical significance directly. Here I’ll focus on error bars for confidence intervals. 
 For example, Figure 4 shows the results of the Martian sister study. I represent the Martian 
mean (20 ms) by the bottom of the graph. The error bar associated with the sample mean 
doesn’t cross the bottom of the graph, thereby expressing, visually, that your sister’s VOT is 
significantly different by a two-tailed t test with α = .05 (so p < .05). 
 

 
Figure 4. Visual evidence that your sister is not a Martian 
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 How did I make this graph? I started by computing the sample mean, so I could plot the 
lonely white bar in the bar plot. Then I calculated the top and bottom of the confidence interval 
as explained above. Excel has a few other options for computing confidence intervals, though 
they’re not easy to use. For example, you could try searching the internet for how to use the 
function =CONFIDENCE_T() (older version) or =CONFIDENCE.T() (newer version), or 
look into Excel’s Descriptive Statistics tool in the Analysis ToolPak. But once you have the 
values of the endpoints of the confidence interval, you can use Excel’s graphing tool to add an 
error bar (誤差線) and type in the values you want to define each end. 
 For some reason the R base package doesn’t have a built-in function for plotting error 
bars; maybe the R creators share my discomfort with them (i.e., that they mix descriptive with 
interferential statistics). Fortunately, an internet search reveals that a guy named James Holland 
Jones (at http://monkeysuncle.stanford.edu/?p=485) has created a function for adding error 
bars using R’s base graphic package. This gives you Figure 5. 
 
# Here's the function 
error.bar = function(x, y, upper, lower=upper, length=0.1,...){ 
 if(length(x) != length(y) | length(y) !=length(lower) | length(lower) != length(upper)) 
  stop("vectors must be same length") 
  arrows(x,y+upper, x, y-lower, angle=90, code=3, length=length, ...) 
} 
 
# Now let's try it on your sister 
conf95 = abs(qt(0.05/2,df=15))*( sd(sister)/sqrt(16)) # What you add/subtract 
sister.plot = barplot(mean(sister),ylim=c(0,30),   # Create and name basic bar plot 
 ylab= "Mean VOT (ms)", main="Sister vs. Martians") 
error.bar(sister.plot, mean(sister), conf95) # Add error bar 
abline(h=20, lty=2) # Dashed line for Martians, outside sister's 95% confidence interval 
 

 
Figure 5. Another way to plot your sister 
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 The graphing package ggplot2 also has a built-in function for plotting error bars, yielding 
Figure 6: 
 
sister.mean = data.frame(Speaker= "MySister",VOT=mean(sister)) # Use data frame! 
library(ggplot2) # Remember that you have to have this package installed already 
ggplot(sister.mean, aes(x=Speaker, y=VOT)) + 
geom_bar(fill="white", color="black",  # White bars with black borders 
 stat="identity") +    # To turn off default statistic, which is the count 
geom_errorbar(aes(ymin=VOT-conf95, ymax=VOT+conf95), # Length of error bar 
 width=0.2)    # Width of error bar 
 

 
Figure 6. Yet another way to plot your sister 
 
 As noted above, the formulas for confidence intervals are derived from the formulas from 
the associated test. So you can calculate confidence intervals for any hypothesis test, including 
two-sample tests. For example, if the samples are independent, then we can use the following 
formula (based on the formula for the ordinary unpaired t test): 
 
Unpaired t test confidence interval: µ1 – µ2  = (M1 – M2) ± (t(df)95%crit)(SE) 
          = (M1 – M2) ± (t(df)95%crit)(sM1-M2) 

         = (𝑀𝑀1 −𝑀𝑀2) ± (𝑡𝑡(𝑑𝑑𝑑𝑑)95%𝑐𝑐𝑟𝑟𝑖𝑖𝑖𝑖)��
𝑠𝑠𝑝𝑝2

𝑛𝑛1
+ 𝑠𝑠𝑝𝑝2

𝑛𝑛2
�

  
 Unlike the one-sample t test confidence interval, for the unpaired t test confidence interval, 
Excel’s t test tool gives all of the values that we need to calculate it. Namely, when we run t 
檢定：兩個母體平均數差的檢定, we get sp

2 as 「Pooled 變異數」, and t(df)95%crit) as 「臨

界值：雙尾」, assuming that we kept α at the default 0.05 when running it. We can compute 
confidence intervals for paired t tests using the same logic, by switching around the paired t 
test formula. 
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 But why bother using any of these formulas, when R gives us the confidence intervals for 
all of these t tests automatically? In order to add confidence intervals to a plot, we just take the 
upper and lower values of the conf.int object given by t.test() and find how long one half of it 
is, giving us the single value that we add/subtract to the means in the plot. 
 For example, let’s plot the error bars for the first boy/girl data set, based on an unpaired t 
test, giving Figure 7: 
 
t.res1 = t.test(boys1,girls1,var.equal=T) # Unpaired t test results 
conf95.1 = (t.res1$conf.int[2]-t.res1$conf.int[1])/2 # Do you see how this works? 
boy = mean(boys1) 
girl = mean(girls1) 
bg.plot = barplot(c(boy,girl), names.arg=c("Boys","Girls"), ylab = "Measure", 
 ylim=c(0,6))  # Create and name basic bar plot 
error.bar(bg.plot, c(boy,girl), c(conf95.1,conf95.1)) # Add error bars (same size) 

 
Figure 7. Plotting boys and girls 
 
 Note that neither mean falls within the error bar of the other category: this shows visually 
that p < .05. This is so even though the two error bars are the same size, since they both reflect 
a single statistical tests (unpaired t test), even though the variance actually differs somewhat 
across the two samples. Moreover, be very careful with this visual trick. First, overlapping 
confidence intervals don’t say anything about significance: p < .05 only if each mean is outside 
the other 95% confidence interval. Second, this trick only works for between-group data (as in 
this unpaired t test), but not for within-group comparisons (as in a paired t tests). Third, 
sometimes error bars in published papers represent the standard error (SE) instead of 
confidence intervals, but the SE is merely used to calculate confidence interval (multiplied by 
the critical value), rather than being something that tells you the p value directly. But don’t feel 
bad if you’re still confused: Belia, Fidler, Williams, & Cumming (2005) found that many 
professional researchers were confused as well! 
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 Now let’s plot error bars for the third data set (nouns vs. verbs), based on a paired t test, 
where again p < .05, and so in Figure 8, the means of each sample do not fall within the 
confidence interval of the other sample. This figure also reflects visually that the effect size  
for this within-group design is greater (smaller 95% confidence intervals) than for the between-
group design shown in Figure 7 (larger 95% confidence intervals). This is so despite the fact 
that actual numbers in these two fake data sets are exactly the same! 
 
t.res3 = t.test(nouns3,verbs3,paired=T) # Paired t test results 
conf95.3 = (t.res3$conf.int[2]-t.res3$conf.int[1])/2 # Same trick 
N = mean(nouns3) 
V = mean(verbs3) 
nv.plot = barplot(c(N,V), names.arg=c("Nouns","Verbs"), ylab = "Measure", 
 ylim=c(0,6))  # Create and name basic bar plot 
error.bar(nv.plot, c(N,V), c(conf95.3,conf95.3)) # Add error bars (same size) 

 
Figure 8. Plotting nouns and verbs. 
 
 Other R packages include functions not only for adding error bars to plots, but also for 
computing the confidence intervals that they’re based on. One package for this measure of 
effect size is named, appropriately enough, effects (Fox, 2003); we’ll see how to use it in a 
later chapter. Another package with error bar functions is sciplot (Morales, 2017). 
 
4. Nonparametric tests 
 
 All of the above t tests assume that your samples come from a normally distributed 
population (though as we noted, they are relatively robust to violations of assumptions like 
this). So if your sample isn’t at all normally distributed, to be safe you might want to try a 
nonparametric two sample test, that is, a test (like Spearman’s ranked correlation) that makes 
no assumptions about distribution shape. 
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 The Mann-Whitney U test (named after the coauthors of the late 1940s paper that 
proposed it, Henry Mann [1905-2000] and his student Donald Whitney; don’t ask me where 
the capital-U comes from) is the standard nonparametric alternative to the unpaired t test. Like 
Spearman’s ranked correlation, it relies solely on ranking, so it doesn’t care about normality, 
which is good if your sample is skewed or ordinal, but for the same reason, it’s also less 
powerful. 
 The heart of the U test is a comparison of how often the values in one sample outrank the 
values in the other sample. More precisely, the U value represents the number of times that 
individual ranks in the overall lower ranking group exceed individual ranks in the overall 
higher ranking group. So this test is a rarity among statistical tests: a low U value means that 
items in the lower-ranked sample are lower than items in the higher-ranked sample than would 
be expected by chance. Thus lower U means lower p too (greater significance). 
 There is also a nonparametric alternative to the paired t test, called the Wilcoxon T test 
(or Wilcoxon signed-rank test), named after a guy named Smith. No, sorry, he was actually 
named Frank Wilcoxon (1892-1965). This test is also based on ranks, so it has all the strengths 
and weaknesses of other ranked tests. 
 Like a paired t test, what you look at in the capital-T Wilcoxon test is the differences 
across the paired samples, in this case the differences of each pair’s relative ranks. The idea is 
that you want to see if “most” of the differences are the same sign (i.e., “mostly” positive or 
“mostly” negative), which would show that there’s a consistent difference between the samples. 
The T value then represents the sum of the ranks for the lower ranking set of difference scores 
(i.e., the “minus” scores vs. “plus” scores). If this sum is low, this shows that there is indeed a 
consistent difference between the samples (e.g., “mostly” positive differences), so the lower 
the T value, the less likely the difference between groups is due to chance. Thus as with U, the 
lower the T value, the lower the p value, backwards from the usual relation between test 
statistics and p values. Also like the Mann-Whitney U test, the Wilcoxon T test is an asymptotic 
test, so it still works better for larger samples. The Wilcoxon T test also assumes that the 
differences between the paired samples are symmetric (even if they’re not necessarily normal). 
 Again, I’m not going to go through the detailed procedure here. If you want to do the 
Mann-Whitney test or the Wilcoxon test, you should use a computer program (unless your 
sample is quite small and you like to do arithmetic). In R, because the ranking algorithms are 
related, the command for both is the same: wilcox.test() (poor Mann and Whitney!). The syntax 
is otherwise kind of like that for t.test(): if you use the default argument values, you get the 
unpaired Mann-Whitney test, but if you set the paired argument to TRUE, you get the 
Wilcoxon test. You can even use the formula notation! 
 For example, compare the p values you get for our four data sets with the ones we got 
with the various types of t tests. Annoyingly, R’s text output doesn’t give you either U or T as 
test statistics, but rather the algebraically related W and V (respectively). I guess if you’re going 
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to report this output, you’re going to have to refer to those things instead. There are no degrees 
of freedom here either, but since sample size matters, you should report that too. 
 
wilcox.test(boys1, girls1) # (two-tailed) Mann-Whitney U test 
wilcox.test(Measure ~ Gender, data=study1) # The same, using formula notation 
wilcox.test(nouns3, verbs3, paired=T) # (two-tailed) Wilcoxon T test 
wilcox.test (Measure ~ WordType, data = study3, paired = T) # Exactly the same thing 
 
 As with Welch’s t test (i.e., the heteroscedastic unpaired t test), it may not be crucial to 
worry too much about violations of the assumptions of parametric tests, since they are pretty 
robust (Glass et al., 1972). That is, you still get pretty reliable p values even if the tests’ 
assumptions are violated (especially in larger samples). You can get a sense of this from the 
simulation below, where I randomly generate 10,000 couples of 20-element independent 
uniformly distributed samples (so they aren’t normal), and then run both the ordinary unpaired 
t test and the Mann-Whitney U test on them, and finally count how often each test is significant 
(p < .05) and how often the two tests conflict in significance. When I ran this, I only found that 
both tests were significant around 5% of the time (which is proper, since these are totally 
random samples, so the null hypothesis is true), and they only disagreed about significance 
about 1% of the time (i.e., quite rarely). Try it! 
 
t.sig = 0 # Counts how often t is sig (p < .05) 
u.sig = 0 # Counts how often U is sig (p < .05) 
conflict = 0 # Will count cases where the significances mismatch 
for (i in 1:10000) { 
 sample1 = runif(20) 
 sample2 = runif(20) # So H0:mu1=mu2 should show p < .05 with 1/20 chance 
 t.p = t.test(sample1,sample2,var.equal=T)$p.value 
 u.p = wilcox.test(sample1,sample2)$p.value 
 if (t.p < 0.05) { 
  t.sig = t.sig + 1 
 } 
 if (u.p < 0.05) { 
  u.sig = u.sig + 1 
 } 
 if ((t.p < 0.05 & u.p >= 0.05) | (t.p >= 0.05 & u.p < 0.05)) { # Remember "|" = "or" 
  conflict = conflict + 1 
 } 
} 
t.sig/10000 # Ideally should be 0.05 (since null hypothesis is true for random samples) 
u.sig/10000 # Ditto 
conflict/10000 # Is this low enough not to worry? 
 
 Just as the nonparametric Wilcoxon T test builds on the logic of the nonparametric Mann-
Whitney test (and in the parametric world, both the unpaired and paired t tests are related to 
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the one-sample t test, which is related to Pearson’s correlation coefficient r and the one-sample 
z test, and ANOVA is related to the t test too, etc etc), so it is possible to invent new 
nonparametric tests for special purposes - which people are still doing today! In a surprisingly 
recent paper, Parker, Vannest, Davis, and Sauber (2011) propose a solution to the challenge of 
analyzing the effect of an experimental manipulation (e.g., language therapy) on a single person, 
given that any difference in “before treatment” vs. “after treatment” is confounded with time 
(e.g., maybe the person just got better or worse naturally and the treatment didn’t do anything). 
In their method, they combine a Mann-Whitney U test (for the before/after comparison) with 
Kendall’s tau as a nonparametric correlation method (introduced in the previous chapter) in 
order to reduce the influence of mere time trends. The resulting measure is thus called Tau-U 
(see https://www.jepusto.com/what-is-tau-u/ for some R code). As an example of this method 
being used in clinical linguistics, see Liang (2020). 
 To summarize, then, nonparametric tests like the Mann-Whitney and Wilcoxon tests have 
(almost) no assumptions, so they are (almost) always “legal” to use, and thus are unlikely to 
commit a Type I error. However, precisely because they use less information than parametric 
tests (e.g., only the ranks in a ranked test, instead of the actual values), they are less powerful, 
and thus more likely to commit a Type II error. Meanwhile, parametric tests like the unpaired 
and paired t tests turn out to be relatively robust to violations of their assumptions anyway, so 
unless your distribution is very weirdly shaped or very small, you probably don’t need to use 
nonparametric tests. Still, you sometimes see them being used precisely under those 
circumstances. For example, genuine linguistic uses of the Mann-Whitney test include Baars, 
Motley, & MacKay (1975) and Lee & Goldrick (2008). 
 
5. Conclusions 
 
 This chapter was mainly about t tests, which are all related to each other, and in turn are 
related to the z test, ANOVA, correlation, and regression. We started with the unpaired t test, 
which is used to test the null hypothesis that the population means associated with two 
independent samples are the same (or differ by some fixed amount). Exactly how you compute 
the unpaired t test depends on whether the sample sizes and sample variances are the same, but 
you need to know which version you’re using when you run an analysis in Excel or R, but the 
actual calculations are done by the computer. In a long side discussion, we learned how to test 
the null hypothesis that the variances of the populations associated with two independent 
samples are the same, using something called the F test, which will return to center stage when 
we get to ANOVA. Then we saw how the paired t test is used to test the null hypothesis that 
the difference between population means is zero for paired sample data; it is mathematically 
much simpler than the unpaired t test, but again we can just let Excel or R do the math for us. 
We also learned some useful but less crucial stuff, starting with how to go beyond p values to 

https://www.jepusto.com/what-is-tau-u/
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estimate effect size as well, using Cohen’s d and confidence intervals (even though they don’t 
mean exactly what we wish they did). Finally we saw that if we (or our critics) are worried that 
the normality assumption of t tests is violated too severely, we have the option of using 
nonparametric rank-based tests like the Mann-Whitney U test (for unpaired samples) and the 
Wilcoxon T test (for paired samples). 
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