Many useful Excel and R functions

Notes：NA＝not applicable；1：，2：．．＝alternative methods to do the same thing；\＃．．．＝comments if necessary

Description	Excel（Calc usually too）	R
Getting started		
Install program	you probably already have it	http：／／cran．r－project．org／
Update program	spend money	```1: http://cran.r-project.org/ 2: Within R (Windows): \# install, move, update, quit: if(!require(installr)) \{ install.packages("installr");requir e(installr) \(\}\) updateR(F, T, T, F, T, F, T)```
Run command C	＝C \＃＂＝＂everywhere below too	C \＃no need for＂＝＂before it
Get help on function x	1：click $f x$ symbol，find function， double－click it，click 函數說明 2：search the web	1：？x \＃Needs exact match 2：help（＂x＂）\＃same as ？x 3：？？x \＃Fuzzy match 4：search the web \＃Usage shows syntax and \＃defaults；Arguments shows \＃input；Value shows output
Get help on general function F that works differently for object types A vs．B	NA	$\begin{array}{\|l\|} \hline \text { ?F.A vs. ?F.B } \\ \text { \# For example: } \\ \text { ?summary.lm } \\ \text { ?summary.glm } \\ \text { ?summary.aov } \\ \text { ?summary.table } \\ \text { ?plot.table } \\ \hline \end{array}$
Put value V into variable x	type V into cell x	$\begin{aligned} & 1: x=V \\ & 2: x<-V \\ & 3: V->x \end{aligned}$
Put value V into both x and y	type V into cell x ，drag to y	$\mathrm{x}=\mathrm{y}=\mathrm{V}$ \＃Cool！
Load tab－delimited file＂F＂into data frame D ，first row as variable names	1：copy／paste from text file 2：open file within Excel	$\begin{aligned} & 1: \mathrm{D}=\text { read.delim("F") } \\ & \text { 2: } \mathrm{D}=\text { read.table("F",T) } \end{aligned}$
Load tab－delimited file on the web at http：／／www／F into data frame D	use File／Open，then write／paste http：／／www／F	D＝read．delim（＂http：／／www／F＂）
Load space－delimited file＂F＂into data frame D，first row as variable names	same as above，but then split by space（空格）	$\begin{aligned} & \text { 1: D = read.table("F",T) } \\ & \text { 2: D = read.delim("F",sep=" ") } \end{aligned}$
Load comma－delimited file＂F＂into data frame D ，first raw as variable names	1：open within Excel， splitting columns by＂，＂ 2：copy／paste from text file，then split columns by ＂，＂	$\begin{array}{\|l} \hline \text { 1: } \mathrm{D}=\text { read.csv("F") } \\ \text { 2: } \mathrm{D}=\text { read.table("F", } \\ \text { sep=",", header=T) } \end{array}$
Object x inside object O（e．g．data frame）	click appropriate row or column	$\begin{array}{\|l\|} \hline \text { 1: O\$x } \\ \text { 2: } \operatorname{attach}(\mathrm{O}) ; \mathrm{x} \text {; detach(O) } \\ \text { \# "\$" also applies to function } \\ \text { \# outputs, e.g.: } \\ \text { summary(} \operatorname{lm}(\mathrm{y} \sim \mathrm{x})) \text {) } \text { residuals } \\ \hline \end{array}$
Show the local file directory	NA	$\operatorname{dir}()$
Timing script S	NA	$\begin{aligned} & \text { now }=\text { proc.time() } \\ & \mathrm{S} \\ & \text { proc.time() }- \text { now } \end{aligned}$

Vectors，matrices，lists and data frames		
Create the vector of numbers $\mathrm{x}, \mathrm{y}, \mathrm{z}$	$\mathrm{x}, \mathrm{y}, \mathrm{z}$ in adjacent cells （vertical or horizontal）	$\mathrm{c}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
Omit NA（not available）data in object O	Math functions automatically ignore strings like＂NA＂	na．omit（O）
Create number series $1,2, \ldots \mathrm{n}$	type $1 \& 2$ ，select，then drag lower right corner	1：n
Create number sequence $1,3,5, \ldots, \mathrm{n}$	type $1 \& 3$ ，then drag corner	seq（1，n，by＝2）
Repeat number x for n times	drag cell with x from corner	rep（x，n）
Add 1 to the numbers 2，5，7 to get 3，6，8	NA	1＋c（ $2,5,7)$ \＃grammatical！
Number of values in vector x	COUNT（x）\＃only numbers	length（x）\＃numbers or strings（all same type）
Number of values in vector x that are greater than y	COUNTIF（x，＂＞y＂）	length（ $\mathrm{x}[\mathrm{x}>\mathrm{y}$ ］）
Convert number x into string＂x＂	$\begin{aligned} & \text { TEXT(x,"\#.\#\#") \# } 2 \\ & \text { decimals } \end{aligned}$	as．character（x）
Look up x in table T，find what＇s in column C（in x＇s row）	VLOOKUP（x，T，C，FALSE ）	$\mathrm{C}[\mathrm{T}=\mathrm{=} \mathrm{x}]$
Create data frame D with columns x \＆y	NA	$\mathrm{D}=$ data．frame（ x, y ）
Create data frame D1 that＇s a subset of data frame D，such that $\mathrm{x}>1$	NA	D1 $=\operatorname{subset}(\mathrm{D}, \mathrm{D} \$ \mathrm{x}>1)$
Count number of rows in data frame D	COUNT（D）\＃select a column	nrow（D）
Count number of columns in data frame D	COUNT（D）\＃select a row	$\mathrm{ncol}(\mathrm{D})$
Put columns x and y side by side	copy／paste them as you like	cbind（x，y）
Put rows x and y one on top of the other	copy／paste them as you like	rbind（x，y）
Create a vector V with N zeros	type 0 ，drag corner	$\mathrm{V}=$ numeric（N）
Create an empty matrix M with C columns and R rows（all＂NA＂＝not available）	type＂NA＂，drag corner down to make column， then drag again rightward （or vice versa）	$\mathrm{M}=$ matrix（ （ $\mathrm{col}=\mathrm{C}$ ，nrow $=\mathrm{R}$ ）
Create the matrix a c b d	type a，b，c，d into the appropriate cells	$\begin{aligned} & \text { 1: matrix(c(a,b,c,d),nrow=2) } \\ & \text { 2: matrix(c(a,b,c,d),ncol=2) } \\ & \hline \end{aligned}$
Flip（transpose） $\mathrm{n} \times \mathrm{m}$ matrix M （ n rows， m columns）into $\mathrm{m} \times \mathrm{n}$ matrix M^{\prime}	copy matrix，paste in new place using Paste Special （選擇性貼上）and Transpose（轉置）	t（M）
Add column names＂A＂\＆＂B＂to two－ column matrix M	NA	colnames（M）＝c（＂A＂，＂B＂）
Add row names＂A＂\＆＂B＂to two－row matrix M	NA	rownames（M）＝c（＂C＂，＂D＂）
Show column and row names of matrix M	NA	colnames（M）；rownames（M）
Show column names in data frame D	NA	$\begin{aligned} & \hline \text { 1: names(D) } \\ & \text { 2: colnames(D) } \\ & \hline \end{aligned}$
For vector x ，find the ith position	click on the appropriate cell	x［i］
For the data frame（or matrix） x ，find the ith row and jth column	click on the appropriate cell	$\mathrm{x}[\mathrm{i}, \mathrm{j}]$
All values in data frame D on row x	click row number x	D［x，］
All values in data frame D in ith column named＂x＂	click column letter＂x＂	1：D［，i］\＃Using number 2：D［，＂x＂］\＃Using name
Show first six rows of data frame D	scroll to the top of the sheet	head（D）

Show last six rows of data frame D	scroll to the bottom of the sheet	tail(D)
Sort column x into alphanumerical order	use $\mathrm{A} \rightarrow \mathrm{Z}$ dialog box	sort(x)
Sort columns x and y in data frame D into the order defined by x	use $\mathrm{A} \rightarrow \mathrm{Z}$ dialog box	1: $\mathrm{D}[\operatorname{order}(\mathrm{D} \$ \mathrm{x})$, 2: library (dplyr) arrange(D, x)
Remove repeats in vector A	sort column A , then in B 2 : IF(A2=A1,"",A2), drag down, copy/paste value, sort column B	unique(A)
Combine tables D1 and D2 by matching same-named column x	use VLOOKUP cleverly	merge(D1,D2)
Combine smaller item, subject, and response files I, S, R into one large file	use VLOOKUP cleverly	merge(R,I) \# Same item IDs merge(R,S) \# Same subj IDs
Create a list with number 1 and string "a"	just type/paste into cells	list(1,"a") \# c() can't do this
Create a list L of vectors (1,2) and ($3,4,5$)	NA	$\mathrm{L}=\operatorname{list}(\mathrm{c}(1,2), \mathrm{c}(3,4,5))$
Second element in first element in list L	NA	L[[1]][2] \# e.g. = 2 for above
Split vector or data frame X by factor F	NA	split(X,F) \# Outputs a list
Check if vector x elements are in vector y	NA	is.element(x,y)
Remove elements that are in vector x from vector y	NA	$\begin{aligned} & \text { 1: } \mathrm{y}[\mathrm{y}!=\mathrm{x}] \\ & \text { 2: } \operatorname{setdiff(y,x)} \end{aligned}$
Cut continuous values in vector x into n equal-sized bins, creating new factor B	NA	$\mathrm{B}=\operatorname{cut}(\mathrm{x}, \mathrm{n})$
Logic		
True	TRUE	$\begin{aligned} & \text { 1: TRUE } \\ & \text { 2: T \# never "true" or "t" } \end{aligned}$
False	FALSE	$\begin{aligned} & \text { 1: FALSE } \\ & \text { 2: F \# never "false" or "f" } \end{aligned}$
If x is true then value y, otherwise value z	IF(x,y,z)	if (x) $\{\mathrm{y}\}$ else $\{\mathrm{z}\}$
If x is true then command y, otherwise command z	NA	if (x) $\{\mathrm{y}\}$ else $\{\mathrm{z}\}$
x equals y (true or false)	$\mathrm{x}=\mathrm{y}$	$\mathrm{x}==\mathrm{y}$
x doesn't equal y (true or false)	$\mathrm{x}<>\mathrm{y}$	x! $=\mathrm{y}$
x and y (true only if both x and y are true)	AND(x,y)	x \& y
x or y (true if either x and/or y is true)	OR(x,y)	$\mathrm{x} \mid \mathrm{y}$
Convert logical x into 0 (F) or 1 (T)	if(x, 1,0)	$\begin{aligned} & \text { 1:1*x } \\ & \text { 2: as.numeric }(\mathrm{x}) \\ & \hline \end{aligned}$
Functions and packages		
Add comment y after R code line x	NA	x \# y
Run command x , then command y	NA	$\begin{gathered} 1: x \\ y \\ 2: x ; y \end{gathered}$
Repeat command x for n times (for-loop)	NA	for (i in 1:n) $\{\mathrm{x}\}$ \# 1:n is vector!
Print out "JM" one letter at a time	NA	for (i in c("J","M")) \{print(i)\}
Create a new function Fun that takes argument x and outputs value y	need to use VBA to create a macro (search web for help)	$\begin{aligned} & \text { Fun }=\text { function }(x)\{ \\ & \text { return }(\mathrm{y}) \\ & \} \end{aligned}$
Compute means of rows in matrix M	AVERAGE(row), drag down	apply(M,1,mean)
Find sum of columns in matrix M	AVERAGE(col), drag right	apply(M,2,sum)
Compute by-subj means for variable x in data set D \# or any one-argument function (e.g. sum)	AVERAGE(x) \# assumes subj defines rows (columns) and x values are in a matrix	```1: apply(Dx,Dsubj,mean) 2: library(dplyr) summarize(group_by(D, subj), mean(x))```
Compute means for variable y when another variable $\mathrm{x}>23$	AVERAGEIFS(y,x,">23") \# assumes x and y are columns like in R	mean(y[x>23])

Compute means for variable y for factors A (A1 vs. A2) \& B (B1 vs. B2), and put them in a table	DAVERAGE(database,field, criteria) \# "database" = R-style data \# "field" = factor name \# "criteria" = minitable like: A B (factor names) A1 B2 (one level each)	tapply(y,list(A,B),mean) \# more factors and more levels also work

Put six plots into a 2－row by 3－column arrangement	lots of plotting	1：par（mfrow＝c（2，3）） for（i in 1：6）$\{\operatorname{plot}(\operatorname{runif}(10))\}$ 2：layout（matrix（1：6，nrow＝2）） for（i in 1：6）$\{\operatorname{plot}($ runif（10））$\}$
Make a scatterplot of vectors x and y with x －axis label＂Age＂， y －axis label ＂Accuracy＂，with x values from 0.5 to 1 and y values from 0 to 0.5 \＃Same methods work for most plots， including histograms	poke around chart menu	```plot(x,y, xlab = "Age", ylab = "Accuracy", xlim=c(0.5,1), ylim=c(0,0.5))```
Make x \＆y scatterplot with no numbers	poke around chart menu	plot（x，y，xaxt＝＂n＂，yaxt＝＂n＂）
Add horizontal line to existing plot at $\mathrm{y}=3$	NA	abline（h＝3）
Add vertical line to existing plot at $\mathrm{x}=7$	NA	abline（v＝7）
Make a line plot of x（on x－axis）and y（on y－axis）	poke around chart menu	```plot(x,y,type="l") \# Make sure x is sorted first! \# type="1": line; \# type="p" (points) default; \# ?plot for other types \# ?points pch for other dot \# shapes```
Make a bar graph of crossed values of $\mathrm{Y}=$ $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ as a function of factors $\mathrm{F}=\mathrm{F} 1, \mathrm{~F} 2$ and $\mathrm{G}=\mathrm{G} 1, \mathrm{G} 2$ in matrix M ，with y －axis starting at zero，and M and barplot like so：	adjust Excel＇s automatic y－axis to start it at zero （recommended by many statisticians to make scale clear）；R acts like Excel here，in treating columns (F) as the main label（in names．arg）and rows（G） as legend label（in legend．test）	```1:M = matrix(c(a,b,c,d), nrow=2) \(\operatorname{barplot}(\mathrm{M}\), beside \(=\mathrm{T}\), names.arg=c("F1","F2"), legend.text=c("G1","G2"), ylab = "Y") 2: search web or books for help on using ggplot2```
Make same bar graph as above，but use y－ axis range a to b ，where a is not zero	poke around chart menu	$\begin{aligned} & \text { barplot(M, beside=T, } \\ & \text { legend.text=c("F1","F2"), } \\ & \text { ylab = "Y", ylim=c(a,b), } \\ & \text { xpd=F, \# Keep bars inside } \\ & \text { xaxt="n") \# No x label yet } \\ & \text { axis(side=1, at=c(2,5), } \\ & \text { labels=c("G1", "G2")) } \\ & \text { box(bty="1") \# lower-case L } \\ & \hline \end{aligned}$
Plot standard histogram of sample $\mathrm{S}(\mathrm{S}=$ vector of numbers）	Analysis toolbox：直方圖 \＃use about 10 equal－sized bins	hist（S）
Change number／size of bars in histogram for S （remember for histograms，bar area is what matters，not bar height）	Analysis toolbox：直方圖 \＃enter different bins	1：hist（S，breaks＝3）\＃ 3 bars 2：hist（S，breaks＝c $(0,10))$ \＃Breaks at points 0 and 10
Make box（and whiskers）plot	NA	boxplot（．．．）\＃cf．？boxplot
Plot density of sample S	NA	plot（density（S））
Make line plot with solid line for variable x 1 and dashed line for variable x 2 with dependent variable y	poke around chart menu	$\begin{aligned} & \text { plot(x1,y,type="1") } \\ & \text { lines(x2,y,lty=2) } \\ & \text { \# lty is line type } \\ & \text { \# lty=1 (solid) is default } \\ & \text { \# lty=2 is dashed } \\ & \text { \# lty }=3 \text { is dotted } \\ & \text { \# lwd=2 is wider } \end{aligned}$
Add a legend at the top right for a line plot showing that the solid line represents Cats and the dashed line represents Dogs	poke around chart menu	$\begin{aligned} & \hline \text { legend("topright", } \\ & \text { lty=c(1,2), } \\ & \text { legend=c("Cats","Dog")) } \end{aligned}$

Add upper＋lower error bars to bar plot B with n means M （vector），where each half of the error bar has length E （e．g．， $\mathrm{E}=1$ sd，or $E=S E$ ，or $E=$ one half of the 95% confidence interval）	make bar plot，search menu for error bars，enter values you want	```1:source("http://www.ccunix. ccu.edu.tw/~Ingproc/ errorbar_Rcode.txt") E.bars \(=\operatorname{rep}(E, n)\) error.bar(B,M,E.bars) 2: library(ggplot2) B + geom_errorbar(aes(ymin=M-E, \(y \max =\mathrm{M}+\mathrm{E})\))```
Add linear regression line to scatter plot（ x on x －axis， y on y －axis）	right－click dots，choose 加上趨勢線，then keep 線性 default	$\begin{aligned} & \text { plot }(x, y) \\ & \text { abline }(\operatorname{lm}(y \sim x)) \end{aligned}$
Add local regression line to scatter plot（x on x －axis， y on y －axis）	right－click dots，choose 加上趨勢線，then choose 移動平均	$\begin{aligned} & \text { plot(x,y) } \\ & \text { lines(predict }(\operatorname{loess}(\mathrm{y} \sim \mathrm{x})) \text {) } \\ & \text { \# sort } \mathrm{x} \text { first } \end{aligned}$
Make trellis plot for scatterplot $\mathrm{y} \sim \mathrm{x} 1$＊ x 2 （ $\mathrm{y}, \mathrm{x} 1$ ，x2 all numerical，and you want to visualize the $\mathrm{x} 1 \times \mathrm{x} 2$ interaction）in data frame D，with linear best－fit lines for each	sort data by x 1 ，divide x 1 into a few（3－6）subsets， plot $\mathrm{y} \sim \mathrm{x} 2$ for each subset （like method 3 for R ）	```1: library(lattice) \(\mathrm{x} 1 . \mathrm{eq}=\) equal.count \((\mathrm{D} \$ \mathrm{x} 1)\) xyplot(\(\mathrm{D} \$ \mathrm{y} \sim \mathrm{D} \$ \mathrm{x} 2 \mid \mathrm{x} 1 . \mathrm{eq}\), panel \(=\) function \((x, y)\{\) panel.xyplot(\(\mathrm{x}, \mathrm{y}\)) panel.abline \((\operatorname{lm}(y \sim x))\) \}) 2: library(ggplot2) D\$x1cuts \(=\operatorname{cut}(D \$ x 1,7)\) qplot(\(\mathrm{y}, \mathrm{x} 2\), data \(=\mathrm{D}\), facets \(=\sim x 1\) cuts \()+\) stat_smooth(method =" 1 m ") 3: \(\operatorname{par}(\) mfrow \(=c(2,3)) \# 6\) plots \(\mathrm{D}=\mathrm{D}[\operatorname{order}(\mathrm{D} \$ \mathrm{x} 1)\),] \(\mathrm{N}=\operatorname{nrow}(\mathrm{D})\) \(\mathrm{n}=\) ceiling(N/6) rangey \(=\operatorname{range}(\mathrm{D} \$ \mathrm{y})\) rangex2 \(=\operatorname{range}(\mathrm{D} \$ \mathrm{x} 2)\) for (i in 1:6) \{ \(\operatorname{minx} 1=\mathrm{D} \$ \mathrm{x} 1[\mathrm{n} *(\mathrm{i}-1)+1]\) \(\operatorname{maxx} 1=\mathrm{D} \$ \mathrm{x} 1[\min (\mathrm{n} * \mathrm{i}, \mathrm{N})]\) D. \(\mathrm{i}=\operatorname{subset}(\mathrm{D}\), (D\$x1>= minx1 \& D \(\$ \mathrm{x} 1<=\operatorname{maxx} 1\))) \(\operatorname{plot}(\mathrm{D} . \mathrm{i} \$ \mathrm{x} 2, \mathrm{D} . \mathrm{i} \$ \mathrm{y}\), xlab="x2", ylab="y", main = paste("x1: from",minx1, "to", \(\max 1\) 1)) abline \((\operatorname{lm}(\mathrm{y} \sim \mathrm{x} 2\), data=D.i)) \}```

Make trellis plot for scatterplot of $\mathrm{y} \sim \mathrm{x}$ with linear best－fit lines，with grouping unit g （ y \＆ x numerical）in data frame D \＃Useful for LME and GLMM too	sort data by g ，plot $\mathrm{y} \sim \mathrm{x}$ for each g（like method 3 for R ）	```1: library(lattice) xyplot(\(\mathrm{y} \sim \mathrm{x} \mid\) factor \((\mathrm{g})\), data = D) 2: library (ggplot2) qplot(\(\mathrm{x}, \mathrm{y}\), data=D, facets \(=\sim \mathrm{g})+\) stat_smooth(method =" 1 m ") 3: \(\operatorname{par}(m f r o w=c(n, m))\) \(\# \mathrm{n} \& \mathrm{~m}\) divide up g neatly rangex \(=\) range \((\mathrm{D} \$ \mathrm{x})\) rangey \(=\operatorname{range}(\mathrm{D} \$ \mathrm{y})\) for (i in 1:length \((\mathrm{g})\)) \{ D. \(\mathrm{i}=\operatorname{subset}(\mathrm{D}, \mathrm{D}[\mathrm{D} \$ \mathrm{~g}==\mathrm{i}])\) \(\operatorname{plot}(\mathrm{D} \$ \mathrm{x}, \mathrm{D} \$ \mathrm{y}\), main \(=\mathrm{i}\), xlim = rangex, ylim=rangey) \}```
Make 3D scatterplot（x on x－axis， y on y － axis， z on z －axis）	NA	$\begin{aligned} & \text { library }(\mathrm{rgl}) \\ & \operatorname{plot} 3 \mathrm{~d}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \end{aligned}$
Make 3D scatterplot，split into a series of 2D scatterplots（ $x \& y=$ independent variables， $\mathrm{z}=$ dependent variable）	NA	library（ggplot2） $y . \operatorname{cut}=\operatorname{cut}(\mathrm{y}, 7)$ $\mathrm{qplot}(\mathrm{z}, \mathrm{x}$, facets $=\sim \mathrm{y} . \mathrm{cut})$
Make mosaic plot of contingency table T	NA	mosaicplot（T）
Plot logistic regression model L for $\mathrm{y} \sim \mathrm{x}$	sort data by x ，divide y into bins，within each bin convert y to logits： LN（AVERAGE（y）／ （1－AVERAGE（y）） make scatterplot of $\log \operatorname{it}(\mathrm{y}) \sim \mathrm{x}$ ， right－click dots，choose 加上趨勢線，then keep 線性 default \＃Like method 2 for R	```1: plot(x,y) curve(predict(L, data.frame(x=x), type="response"), add=T) 2: bins = cut(x,10) # Or more logit.bin = function(x){ prob1 = mean(c(x,0,1)) prob0 = 1-prob1 return(log(prob1/prob0)) } meanx = tapply(x, bins, mean) logity = tapply(y, bins, logit.bin) plot(meanx, logity) abline(lm(logity~meanx))```
Descriptive statistics		
Make a frequency table for sample S	1：Analysis toolbox：直方 2：see handout for word frequency example	$\begin{aligned} & \hline \text { 1: xtabs }(\sim \mathrm{S}) \\ & \text { 2: table }(\mathrm{S}) \end{aligned}$
Make a frequency table cross－classified by factors x and y （ $\mathrm{x}=$ row， $\mathrm{y}=$ columns）	basically do it by hand	$\begin{aligned} & \text { 1: } \operatorname{xtabs}(\sim \mathrm{x}+\mathrm{y}) \\ & \text { 2: table }(\mathrm{x}, \mathrm{y}) \\ & \hline \end{aligned}$
Mean of sample S	$\begin{aligned} & \text { 1: AVERAGE(S) } \\ & \text { 2: } \operatorname{SUM}(\mathrm{S}) / \operatorname{COUNT}(\mathrm{S}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 1: mean(S) } \\ & \text { 2: } \operatorname{sum}(\mathrm{S}) / \text { length }(\mathrm{S}) \\ & \hline \end{aligned}$
Median of sample S	MEDIAN（S）	median（S）
Mode of sample S	MODE（S）	$\begin{aligned} & \text { as.numeric(names(sort(} \\ & \text {-table(S)))[1]) \# Handout code } \\ & \text { doesn't work (sorry) } \end{aligned}$
Sample standard deviation of sample S	STDEV（S）	$\begin{aligned} & \text { 1: } \operatorname{sd}(\mathrm{S}) \\ & \text { 2: } \operatorname{sqrt(\operatorname {sum}((\mathrm {S}-\operatorname {mean}(\mathrm {S}))^{\wedge }2)/} \\ & (\operatorname{length}(\mathrm{S})-1)) \end{aligned}$
Sample variance of sample S	$\begin{aligned} & \text { 1: } \operatorname{VAR}(\mathrm{S}) \\ & \text { 2: } \operatorname{STDEV}(\mathrm{S})^{\wedge} 2 \end{aligned}$	$\begin{aligned} & \text { 1: } \operatorname{var}(\mathrm{S}) \\ & \text { 2: } \operatorname{sd}(\mathrm{S})^{\wedge} 2 \\ & \hline \end{aligned}$

Randomness and permutations		
Reset randomizer	Microsoft won＇t say	set．seed（1）\＃or any number
Given x things，calculate how many ways to choose y things	COMBIN（x，y）	choose（x，y）
Randomly select x values between 0 and 1 with equal probability	copy and paste RAND（）x times	runif（x）
Randomly select x values from a normal （Gaussian）distribution with mean M and standard deviation s	Analysis toolbox： 亂數產生器	rnorm（x，M，s）
Distributions		

Convert factor F into an ordinal factor	NA	$\begin{aligned} & \text { 1: } \mathrm{F}=\operatorname{ordered}(\mathrm{F}) \\ & 2: \mathrm{F}=\text { factor }(\mathrm{F}, \text { ordered }=\mathrm{T}) \\ & \text { \# Creates polynomial coding: } \\ & \text { \# F.L }=\text { linear component; } \\ & \text { \# F.Q }=\mathrm{F}^{\wedge} 2 \text { (quadratic) } \\ & \text { \# F.C }=\mathrm{F}^{\wedge} 3 \text { (cubic) } \end{aligned}$
Relevel factor F （levels A and B）so that B is the reference level（ 0 in dummy coding）	NA	$\mathrm{F}=\operatorname{relevel}(\mathrm{F}, \mathrm{B}$＂）
Convert factor F（levels A，B，C）into effect（sum）coding，splitting F into FB （ $\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=-1$ ）and $\mathrm{FC}(\mathrm{A}=0, \mathrm{~B}=-1$ ， $\mathrm{C}=1$ ）\＃Effect coding is better if you want to test interactions with F	NA	$\begin{aligned} & \hline \text { contrasts }(\mathrm{F})= \\ & \text { contr.sum }(\text { levels }(\mathrm{F})) \end{aligned}$
Convert factor F（levels A，B）into effect （sum）coding，changing F into FA（ $\mathrm{A}=1$ ， $\mathrm{B}=-1$ ）	NA	$\begin{aligned} & \text { contrasts }(\mathrm{F})= \\ & \text { contr.sum }(\text { levels }(\mathrm{F})) \end{aligned}$
Convert factor F （levels A, B ）into effect （sum）coding，changing F into $F B$（ $A=-1$ ， $\mathrm{B}=1$ ）\＃Safer than above，in my experience	NA	$\mathrm{FB}=2 *\left(\mathrm{~F}=={ }^{\text {＂}} \mathrm{B}\right.$＂$)-1$
z, t, and F tests		
Two－tailed p value for one－sample z test with population μ and σ and sample S	$\begin{aligned} & \hline \hline \mathrm{z}=(\text { AVERAGE(S) }-\mu) / \\ & (\sigma / \text { SQRT(COUNT(S) })) \\ & \mathrm{p}=2 * \operatorname{NORMSDIST}(- \\ & \text { ABS }(\mathrm{z})) \end{aligned}$	$\begin{gathered} \hline \hline \mathrm{z}=(\operatorname{mean}(\mathrm{S})-\mu) / \\ (\sigma / \operatorname{sqrt}(\operatorname{length}(\mathrm{S}))) \\ \mathrm{p}=2 * \operatorname{pnorm}(-\operatorname{abs}(\mathrm{z})) \end{gathered}$
Two－tailed p value for one－sample t test with population μ and sample S	$\begin{aligned} \mathrm{t}= & (\text { AVERAGE(S)- } \mu) / \\ & (\text { STDEV }(\mathrm{S}) / \\ & \text { SQRT(COUNT(S))) } \\ \mathrm{p}= & \text { TDIST(ABS(t), } \\ & \text { COUNT(S)-1,2) } \end{aligned}$	$\begin{gathered} 1: \mathrm{t}=(\text { mean }(\mathrm{S})-\mu) / \\ (\operatorname{sd}(\mathrm{S}) / \mathrm{sqrt}(\mathrm{length}(\mathrm{~S}))) \\ \mathrm{p}=2 * \mathrm{pt}(-\mathrm{abs}(\mathrm{t}), \\ \text { df=}=\operatorname{length}(\mathrm{S})-1) \\ \text { 2: t.test }(\mathrm{S}, \mathrm{mu}=\mu) \end{gathered}$
Unpaired t test assuming equal variance （homoscedastic）for a vs． b （levels of factor X ，with dependent variable Y ）	Analysis toolbox： t 檢定：兩個母體平均數差的檢定，假設變異數相等	$\begin{aligned} & \text { 1: } \operatorname{t.test}(\mathrm{a}, \mathrm{~b}, \text { var.equal }=\mathrm{T}) \\ & \text { 2: } \operatorname{t.test}(\mathrm{Y} \sim \mathrm{X}, \text { var.equal }=\mathrm{T}) \end{aligned}$
Unpaired t test not assuming equal variance（heteroscedastic）for a vs． b （levels of X，with dependent variable Y）	Analysis toolbox： t 檢定：兩個母體平均數差的檢定，假設變異數不相等	$\begin{aligned} & \text { 1: } \operatorname{t.test}(\mathrm{a}, \mathrm{~b}) \\ & \text { 2: } \mathrm{t} . \operatorname{test}(\mathrm{Y} \sim \mathrm{X}) \end{aligned}$
Paired t test for a vs． b （levels of factor X ，with dependent variable Y ）	Analysis toolbox： t 檢定：成對母體平均數差 異檢定	$\begin{aligned} & \text { 1: } \operatorname{t.test}(\mathrm{a}, \mathrm{~b}, \text { paired }=\mathrm{T}) \\ & \text { 2: } \operatorname{t.test}(\mathrm{Y} \sim \mathrm{X}, \text { paired }=\mathrm{T}) \end{aligned}$
One－tailed p value for a certain F value and $d f_{\text {numerator }}$ and $d f_{\text {denominator }}$	FDIST（F， $\mathrm{df}_{\mathrm{n}}, \mathrm{df}_{\mathrm{d}}$ ）	$\begin{aligned} & \text { 1: } 1-\mathrm{pf}\left(\mathrm{~F}, \mathrm{df}_{\mathrm{n}}, \mathrm{df}_{\mathrm{d}}\right) \\ & \text { 2: } \mathrm{pf}\left(\mathrm{~F}, \mathrm{df} \mathrm{f}_{\mathrm{n}}, \mathrm{df} \mathrm{~d} \text {, lower.tail }=\mathrm{F}\right) \end{aligned}$
One－tailed F test to test if samples a and b come from populations with equal variances，where $\mathrm{S}_{\mathrm{a}}>\mathrm{s}_{\mathrm{b}}$	Analysis toolbox： F 檢定：兩個常態母體變異數的檢定（a must be to the left b）	$\begin{aligned} & \text { 1: } 1-\operatorname{pf}\left(\mathrm{F}, \mathrm{df}_{\mathrm{a}}, \mathrm{df}_{\mathrm{b}}\right) \\ & \text { 2: } \mathrm{pf}\left(\mathrm{~F}, \mathrm{df}_{\mathrm{a}}, \mathrm{df}_{\mathrm{b}} \text {, lower.tail }=\mathrm{F}\right) \end{aligned}$
Two－tailed F test to test if samples a and b come from populations with equal variances	FTEST（a，b）	var．test（x，y）
95\％confidence interval for t tests	Run analysis toolbox，get critical value and variance to compute using handout formulas	t．test（．．．）gives upper and lower value of confidence interval automatically；to use in graph， must find half its range：（max－ $\min) / 2$

$\mathrm{x} \%$ confidence interval for t tests	Run analysis toolbox using alpha $=1-x / 100$ ，get critical value and variance to compute using handout formulas	t．test（.. ，conf．level $=x / 100$ ）gives $\mathrm{x} \%$ confidence interval automatically
Correlation and linear regression analysis		
Pearson＇s correlation coefficient r（for variables x and y ）	CORREL（x，y）	cor（x，y）
Test significance of Pearson＇s correlation coefficient（between x and y ）	use correl－sig．xls or search the Web for tools	$\begin{aligned} & \text { 1: cor.test(} x, y) \\ & \text { 2: summary }(\operatorname{lm}(y \sim x)) \end{aligned}$
Multiple linear regression（ $\mathrm{y}=\mathrm{dep}$ ； x 1 ， x 2 ＝indeps），with data in D	Analysis toolbox：迴歸	$\begin{aligned} & \text { summary }(\operatorname{lm}(\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2 \text {, data }=\mathrm{D})) \\ & \text { \# data argument also used below } \end{aligned}$
Likelihood ratio test for fit of simpler model L0 vs．fit of more complex L1	NA	$\begin{aligned} & \text { anova(L0,L1) } \\ & \text { \# L0 and L1 created by } \operatorname{lm}(\ldots) \\ & \hline \end{aligned}$
Test significance of indep x 1 in linear model $\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2$	Analysis toolbox：迴歸	$\begin{aligned} & \text { 1: summary }(\operatorname{lm}(\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2)) \\ & \text { 2: } \operatorname{anova(M.no_ x1,M.has_ x1)~} \end{aligned}$
Stepwise regression for $\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2$ in dataframe D	NA	attach（D） base． $\operatorname{lm}=\operatorname{lm}(\mathrm{y} \sim 1)$ summary（step（base．lm， $\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2)$ ）
Test independent variables $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$ for collinearity in dataframe D （dependent variable $=y$ ）	Analysis toolbox：迴歸 Then compute R^{2} for $\mathrm{x} 1 \sim \mathrm{x} 2+\mathrm{x} 3$ ，then use VIF formula in handout	```1: library(car) \(\operatorname{vif}(\operatorname{lm}(y \sim x 1+x 2+x 3))\) \(\#<5\) is good 2: \(\operatorname{kappa(D[c("x1","x2","x3")])~}\) \# < 30 is good 3: library(languageR) collin.fnc(D[c("x1", "x2", "x3"))\$cnumber```
Get predictions（y－hat）of simple linear model predicting y from x for new data x^{\prime}	FORECAST（ $\mathrm{x}^{\prime}, \mathrm{y}, \mathrm{x}$ ） \＃ x^{\prime} is just one value	predict $(\operatorname{lm}(\mathrm{y} \sim \mathrm{x})$ ，newdata $=$ data．frame（ $\left.\mathrm{x}^{\prime}\right)$ ） \＃ x^{\prime} is a vector；also works for multiple regression
Get residuals of a linear model L for dependent variable Y	Analysis toolbox：迴歸， then use coefficients to write equation to predict y－ hat，then subtract y－hat from real values Y	$\begin{aligned} & \text { 1: } \operatorname{resid}(\mathrm{L}) \\ & \text { 2: Y-predict(L) } \end{aligned}$
Standardize regression coefficients for regression model $\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2$（also works for generalized linear models and mixed－ effects models）	1：Use STANDARDIZE on $\mathrm{x} 1 \& \mathrm{x} 2$ then Analysis toolbox：迴歸 on these z scores 2：Analysis toolbox：迴歸， then for x 1 coefficient B1：B1＊STDEV（x1）／ STDEV（y）\＃Same for x2	$\begin{aligned} & \text { 1: } \operatorname{summary}(\operatorname{lm}(\mathrm{y} \sim \operatorname{scale}(\mathrm{x} 1)+ \\ & \text { scale }(\mathrm{x} 2) \\ & \text { 2: For } \mathrm{x} 1 \text { coefficient B1: } \\ & \text { B1*sd }(\mathrm{x} 1) / \text { sd }(\mathrm{y}) \text { \# Same for } \mathrm{x} 2 \end{aligned}$
Repeated－measures regression $\mathrm{y} \sim \mathrm{x}$ with grouping variable g in data frame D （also applies to logistic \＆Poisson regression）， where $\mathrm{B}=$ by－unit coefficients（e．g．， $\mathrm{B}=$ B 0 for intercept，or $\mathrm{B}=\mathrm{B} 1$ for x slope）	Analysis toolbox：迴歸 AVERAGE（B）\＃Coef． STDEV（B）\＃SE \＃t，df，p from one－sample \＃t test（see above）	```B.coef = numeric(length(g)) for (i in 1:length(g)) \{ D. \(\mathrm{i}=\operatorname{subset}(\mathrm{D}, \mathrm{D}[\mathrm{D} \$ \mathrm{~g}==\mathrm{i}])\) \(\operatorname{lm} . \mathrm{i}=\operatorname{lm}(\mathrm{y} \sim \mathrm{x}\), data \(=\mathrm{D} . \mathrm{i})\) B.coef[i] = summary(lm.i) \$coefficients["B","Estimate"] \} t.test(B.coef) \# gives all but SE \# I'll add SE info after HW3...```
ANOVA		
One－way independent－measures ANOVA （ $\mathrm{y}=$ dependent； $\mathrm{x}=$ independent）	Analysis toolbox：單因子變異數分析	$\begin{aligned} & \hline \text { 1: summary }(\operatorname{aov}(y \sim x)) \\ & \text { 2: } \operatorname{anova}(\operatorname{lm}(y \sim x)) \end{aligned}$

Two－way independent－measures ANOVA （ $\mathrm{y}=$ dependent； $\mathrm{x} 1, \mathrm{x} 2=$ independents）	Analysis toolbox： 雙因子變異數分析：重複試驗	$\begin{aligned} & \hline \text { 1: summary }(\operatorname{aov}(y \sim x 1 * x 2)) \\ & \text { 2: } \operatorname{anova}(\operatorname{lm}(y \sim x 1 * x 2)) \end{aligned}$
One－way repeated－measures ANOVA（ $\mathrm{y}=$ dependent； $\mathrm{x}=$ indep； $\mathrm{S}=$ grouping unit）	Analysis toolbox： 雙因子變異數分析：無重複試驗	$\begin{aligned} & \text { S = as.factor(S) \# Make sure! } \\ & \text { summary }(\operatorname{aov}(\mathrm{y} \sim \mathrm{x}+\operatorname{Error}(\mathrm{S} / \mathrm{x}))) \end{aligned}$
Two－way repeated－measures ANOVA（ $\mathrm{y}=$ dep；x1，x2＝indeps；grouped by S）	use repeated－measures regression by hand	$\begin{aligned} & \text { summary(aov(y } \sim \mathrm{x} 1 * \mathrm{x} 2 \\ & +\operatorname{Error}(\mathrm{S} /(\mathrm{x} 1 * \mathrm{x} 2)))) \\ & \hline \end{aligned}$
One type of mixed ANOVA（ $\mathrm{y}=\mathrm{dep}$ ； $\mathrm{x} 1=$ between－group indep；$x 2$＝within－group indep，grouped by S）	probably NA	```1: summary(aov(y ~ x1*x2 +Error(S/x2))) 2: library(ez) # Likewise above ezANOVA(dv = y, wid = S, within = x2, between = x1)```
Tukey HSD test［formula＝any ANOVA formula，e．g． $\mathrm{y} \sim \mathrm{x}$ ，or $\mathrm{y} \sim \mathrm{x}+\operatorname{Error}(\mathrm{S} / \mathrm{x})$ ］	use equation in handout and find table of Studentized range statistic q on the Web	```1: TukeyHSD(aov(formula)) 2: library(emmeans) emmeans(aov(formula), list(pairwise \(\sim \mathrm{x}\)), adjust="tukey")```
Correct for sphericity violations in repeated－measures ANOVA in factors with more than two levels（ $\mathrm{y}=\mathrm{dep}$ ； $\mathrm{x}=$ within－ group indep with 3 or more levels； $\mathrm{S}=$ grouping unit； $\mathrm{df}=\mathrm{df}_{\text {denominator }}$ ）	NA	```library(ez) ezANOVA(dv = y, wid \(=S\), within = x) \# HFe = Huynh-Feldt epsilon \(\# \mathrm{p}[\mathrm{HF}]=\) its p value \# correct \(\mathrm{df}=\) original df * HFe```
Compute minF＇for independent variable x ，using the following ANOVA results： By－participant ANOVA： x．F1： F value for x x．dfn1：df for x levels（numerator） x．dfd1：df for random（denominator） By－item ANOVA： x．F2： F value for x x．dfn2：df for x levels（numerator） x．dfd2：df for random（denominator） Then you get the following： $\operatorname{minF} . F:$ minF $^{\prime}$ minF．dfn：df for x levels minF．dfd：df for random minF．p：p value	```\(\operatorname{minF} . \mathrm{F}=\) (x.F1*x.F2/(x.F1+x.F2) minF.dfn = x.dfn1 \# (= xdfn2) \(\operatorname{minF} . d f d=\) (x.F1+x.F2) \()^{\wedge}\) / (x.F1^2/x.dfd2 + x.F2^2/x.dfd1) \(\operatorname{minF} . p=\) FDIST(minF.F, minF.dfn, minF.dfd)```	```\(\operatorname{minF} . \mathrm{F}=\) (x.F1*x.F2/(x.F1+x.F2) minF.dfn = x.dfn1 \# (= xdfn2) \(\operatorname{minF} . d f d=\) (x.F1+x.F2) \({ }^{\wedge} 2\) / (x.F1^2/x.dfd2 + x.F2^2/x.dfd1) \(\operatorname{minF} . p=p f(\operatorname{minF} . F, \operatorname{minF} . d f n\), minF.dfd, lower.tail=F)```
Contingency tables（and other simple categorical tests）		
one－tailed p value for binomial test on getting at most x in n binary events	BINOMDIST（x，n，0．5，TRUE）	```1: pbinom(x, n, 0.5) 2: binom.test(x,n,alternative="left")```
One－way chi－squared test on vector V， where H_{0} ：all counts the same	CHITEST（observed，expected） \＃Must compute expected first	chisq．test（V）
One－way chi－squared test on vector V， where H_{0} ：counts $=$ vector W	CHITEST（observed，expected） \＃Also，only gives p value	$\operatorname{chisq} . \operatorname{test}(\mathrm{V}, \mathrm{p}=\mathrm{W})$
Two－way chi－squared test for column \times row interaction in 2×2 matrix M	CHITEST（observed，expected） \＃Doesn＇t use Yate＇s correction	1：chisq．test（M）\＃With Yate＇s 2：summary（as．table（M）） \＃Without Yate＇s correction
Two－way chi－squared test for column \times row interaction in larger matrix M	CHITEST（observed，expected） \＃Basically，forget this method	$\begin{aligned} & \text { 1: chisq.test(M) } \\ & \text { 2: summary(as.table(M)) } \\ & \text { \# Same: Yate's irrelevant } \end{aligned}$
Two－tailed p value testing for column \times row interaction in contingency table M	NA	fisher．test（M）
Exact McNemar test for paired binary data，with a $(1,0)$ pairs and $b(0,1)$ pairs	$\begin{aligned} & \text { BINOMDIST(MIN }(\mathrm{a}, \mathrm{~b}), \mathrm{a}+\mathrm{b}, \\ & 0.5, \text { TRUE) } \end{aligned}$	$\operatorname{pbinom}(\min (\mathrm{a}, \mathrm{b}), \mathrm{a}+\mathrm{b}, 0.5)$

Logistic regression (and other generalized linear models)			
Convert probability P into log odds (logit)	LN(P/(1-P))		$\begin{aligned} & \text { 1: } \ln (\mathrm{P} /(1-\mathrm{P})) \\ & \text { 2: } \operatorname{library}(\text { gtools }) \\ & \operatorname{logit}(\mathrm{P}) \end{aligned}$
Convert log odds L into probability	EXP(L)/(1+EXP(L))		$\begin{aligned} & \text { 1: } \exp (\mathrm{L}) /(1+\exp (\mathrm{L})) \\ & \text { 2: library }(\mathrm{gtools}) \\ & \quad \text { inv.logit(} \mathrm{L}) \end{aligned}$
Logistic regression model $\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2$ (y is binary variable, all data are independent), with data in data frame D	NA		$\begin{aligned} & \operatorname{glm}(y \sim x 1+x 2, \\ & \text { family=binomial, data }=D) \\ & \text { \# data argument also below } \\ & \hline \end{aligned}$
Show coefficients table for logistic regression model L	NA		```summary(L) \# p-values based on Wald test```
Predict log odds from logistic regression model L	NA		predict(L)
Predict binary observations (0 vs. 1) from logistic regression model L	NA		predict(L, type="response")
Likelihood ratio test for simpler generalized linear regression model L0 vs. more complex L1 (applies to both logistic regression and Poisson regression)	NA		anova(L0, L1 test="Chisq")
Test parameter x 1 of logistic regression model $\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2$ using likelihood ratio test	NA		$\begin{aligned} & \hline \mathrm{L} 1=\mathrm{g} \operatorname{lm}(\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2, \\ & \text { family }=\text { binomial }) \\ & \mathrm{L} 0=\operatorname{glm}(\mathrm{y} \sim \mathrm{x} 2, \\ & \text { family=binomial }) \\ & \text { anova(L0, L1 test="Chisq" }) \\ & \hline \end{aligned}$
Ordinal logistic regression $y \sim x$ (y is ordinal variable, all data are independent)	NA		```library(MASS) summary \((\operatorname{polr}(\mathrm{y} \sim \mathrm{x})\) \# Table compares each level \# with next level```
Multinomial logistic regression $\mathrm{y} \sim \mathrm{x}$ (y has three nominal values " A ", " B ", " C ", all data independent)	\# Wald test only: $\mathrm{z}=\mathrm{B} / \mathrm{SE}$ $\mathrm{p}=2 *$ NORMSDIST(-ABS(z)) \# Likewise below		library(nnet) summary(multinom($\mathrm{y} \sim \mathrm{x})$) \# Table treats A as baseline \# Wald test for each row: $z=B / S E \quad B=$ coefficient $\mathrm{p}=2$ *pnorm $(-\mathrm{abs}(\mathrm{z}))$
Poisson regression $\mathrm{y} \sim \mathrm{x}$ (y is count data)	NA		summary(glm(y $\sim \mathrm{x}$, family=poisson))
Mixed-effects modeling (linear and generalized linear)			
Maximal one-random-factor LME: $\mathrm{y}=$ dependent (continuous, normal) $\mathrm{x} 1, \mathrm{x} 2=$ independent $\mathrm{g}=$ grouping unit (x 1 grouped by g)	NA	```1: library(nlme) lme \((\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2\), random \(=\sim \mathrm{x} 1 \mid \mathrm{g})\) 2: library(lme4) \# Assumed elsewhere below \(\operatorname{lmer}(\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2+(\mathrm{x} 1 \mid \mathrm{g}))\)```	
Show results of LME model L	NA	```summary(L) \# lme shows p , Imer doesn't \# Always build/name model first, before using summary \# because the model may take a long time to build```	
Get p values for LME model derived from formula structure $\mathrm{y} \sim \mathrm{x}+(\mathrm{x} \mid \mathrm{g})$	NA	1: Trust lme o 2: 2 *pnorm(-a 3: library(afex) $\mathrm{L}=\operatorname{mixed}(\mathrm{y}$ summary(L) 4: library(afex) \# Likelihoo $\mathrm{L}=\operatorname{mixed}($ summary(L) \# method="PB \# Forget abou \# changes sum	ut (controversial) (t)) \# Claims $\mathrm{t}=\mathrm{z}$ (needs large N) Loads lme4 for you $\mathrm{x}+(\mathrm{x} \mid \mathrm{g}))$ \# Kenward-Roger p Loads lme4 for you atio tests (needs large N) $\mathrm{x}+(\mathrm{x} \mid \mathrm{g})$, method="LRT") not working for afex's mixed function; nerTest (worse than Kenward-Roger, ary.lmer behavior)

Maximal two-random-factor additive LME (recommended by Barr et al., 2013): $\mathrm{y}=$ dependent (continuous, normal) $\mathrm{x} 1, \mathrm{x} 2$ = independent $\mathrm{g} 1=$ grouping unit for x 1 (random effect) $\mathrm{g} 2=$ grouping unit for x 2 (random effect)	NA	1: $\operatorname{lmer}(\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2+(\mathrm{x} 1 \mid \mathrm{g} 1)+(\mathrm{x} 2 \mid \mathrm{g} 2))$ 2: $\operatorname{lmer}(\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2+(1+\mathrm{x} 1 \mid \mathrm{g} 1)+(1+\mathrm{x} 2 \mid \mathrm{g} 2))$ \# R assumes the intercepts automatically	
Maximal one-random-factor LME with interaction: $y=$ dependent (continuous, normal) $\mathrm{x} 1, \mathrm{x} 2=$ independent $\mathrm{g}=$ grouping unit for $\mathrm{x} 1 \& \mathrm{x} 2$	NA	$\operatorname{lmer}(\mathrm{y} \sim \mathrm{x} 1 * x 2+((\mathrm{x} 1 * \mathrm{x} 2) \mid \mathrm{g}))$	
Likelihood ratio test to compare fit of simper LME model L0 vs. complex L1	NA	anova(L0,L1)	
Likelihood ratio test for above to see if random g 2 variable is really necessary (not recommended by Barr et al., 2013, but cf. Raaijmakers et al., 1999)	NA	L.1.2 $=\operatorname{lmer}(\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2+(\mathrm{x} 1 \mid \mathrm{g} 1)+(\mathrm{x} 2 \mid \mathrm{g} 2))$ $\mathrm{L} .1=\operatorname{lmer}(\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2+(\mathrm{x} 1 \mid \mathrm{g} 1))$ anova(L.1, L.1.2)	
LME without random intercepts (if maximal model fails to converge) \# This and below also work for GLMM	NA	$\operatorname{lmer}(\mathrm{y} \sim \mathrm{x}+(\mathrm{x} \mid \mathrm{g}))$ \# Maximal model $\operatorname{lmer}(\mathrm{y} \sim \mathrm{x}+(0+\mathrm{x} \mid \mathrm{g}))$ \# Next-best model	
LME without random intercept \times slope interaction (if above also fails)	NA	$\operatorname{lmer}(\mathrm{y} \sim \mathrm{x}+(0+\mathrm{x} \mid \mathrm{g})+(1 \mid \mathrm{g}))$ \# Slope \& intercept separate	
LME without random slopes (if all fails)	NA	$\operatorname{lmer}(\mathrm{y} \sim \mathrm{x}+(1 \mid \mathrm{g})$) \# Worst LME model (Barr et al., 2013)	
Maximal one-random-factor mixed-effects logistic regression (a kind of GLMM): $\mathrm{y}=$ dependent (binary) $\mathrm{x} 1, \mathrm{x} 2$ = independent g = grouping unit (x 1 grouped by g)	NA	```1: library(MASS) glmmPQL(y~x1+x2, random=~x1 \|g, family=binomial) 2: library(lme4) # Assumed elsewhere below glmer(y~x1+x2+(x1	g), family=binomial)```
Maximal two-random-factor mixed-effects logistic regression: $\mathrm{y}=$ dependent (binary) $\mathrm{x} 1, \mathrm{x} 2$ = independent $\mathrm{g} 1=$ grouping unit for x 1 (random effect) $\mathrm{g} 2=$ grouping unit for x 2 (random effect)	NA	$\operatorname{glmer}(\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2+(\mathrm{x} 1 \mid \mathrm{g} 1)+(\mathrm{x} 2 \mid \mathrm{g} 2)$, family=binomial $)$	
Likelihood ratio test to compare fit of simper GLMM model L0 vs. more complex L1	NA	anova(L0, L1, test="Chisq")	

