
Updated 2022/5/4   1 
 

Many useful Excel and R functions 
Notes: NA = not applicable; 1:, 2: ... = alternative methods to do the same thing; # ... = comments if necessary 

Description Excel (Calc usually too) R 
Getting started 
Install program you probably already have 

it 
http://cran.r-project.org/ 

Update program spend money 1: http://cran.r-project.org/ 
2: Within R (Windows): 
# install, move, update, quit: 
if(!require(installr)) 
{ install.packages("installr");requir
e(installr)} 
updateR(F, T, T, F, T, F, T) 

Run command C =C # "=" everywhere 
below too 

C # no need for "=" before it 

Get help on function x 1: click fx symbol, find 
function,  
 double-click it, click 函

數說明 
2: search the web 

1: ?x # Needs exact match 
2: help("x") # same as ?x 
3: ??x # Fuzzy match 
4: search the web 
# Usage shows syntax and  
# defaults; Arguments shows  
# input; Value shows output 

Get help on general function F that works 
differently for object types A vs. B 

NA ?F.A  vs.  ?F.B 
# For example: 
?summary.lm 
?summary.glm 
?summary.aov 
?summary.table 
?plot.table 

Put value V into variable x type V into cell x 1: x = V 
2: x <- V 
3: V -> x 

Put value V into both x and y type V into cell x, drag to 
y 

x = y = V # Cool! 

Load tab-delimited file "F" into data frame 
D, first row as variable names 

1: copy/paste from text 
file 
2: open file within Excel 

1: D = read.delim("F") 
2: D = read.table("F",T) 

Load tab-delimited file on the web at 
http://www/F into data frame D 

use File/Open, then 
write/paste  
 http://www /F 

D = read.delim("http://www /F ") 

Load space-delimited file "F" into data 
frame D, first row as variable names 

same as above, but then 
split by  
 space (空格) 

1: D = read.table("F",T) 
2: D = read.delim("F",sep=" ") 

Load comma-delimited file "F" into data 
frame D, first raw as variable names 

1: open within Excel, 
splitting columns by "," 
2: copy/paste from text 
file, then split columns by 
"," 

1: D = read.csv("F") 
2: D = read.table("F",  
    sep=",", header=T) 

Object x inside object O (e.g. data frame) click appropriate row or 
column 

1: O$x 
2: attach(O); x; detach(O) 
# "$" also applies to function 
# outputs, e.g.: 
summary(lm(y~x))$residuals 

Show the local file directory NA dir() 
Timing script S NA now = proc.time() 

S 
proc.time() - now 

  



 2 

Vectors, matrices, lists and data frames 
Create the vector of numbers x, y, z x, y, z in adjacent cells 

(vertical or horizontal) 
c(x,y,z) 

Omit NA (not available) data in object O Math functions 
automatically ignore 
strings like "NA" 

na.omit(O) 

Create number series 1, 2, ... n type 1 & 2, select, then 
drag lower right corner 

1:n 

Create number sequence 1, 3, 5,..., n type 1 & 3, then drag 
corner 

seq(1,n,by=2) 

Repeat number x for n times drag cell with x from 
corner 

rep(x,n) 

Add 1 to the numbers 2,5,7 to get 3,6,8 NA 1+c(2,5,7) # grammatical! 
Number of values in vector x COUNT(x) # only 

numbers 
length(x) # numbers or strings (all 
same type) 

Number of values in vector x that are 
greater than y 

COUNTIF(x,">y") length(x[x>y]) 

Convert number x into string "x" TEXT(x,"#.##") # 2 
decimals 

as.character(x) 

Look up x in table T, find what's in 
column C (in x's row) 

VLOOKUP(x,T,C,FALSE
) 

C[T==x] 

Create data frame D with columns x & y NA D = data.frame(x,y) 
Create data frame D1 that's a subset of 
data frame D, such that x > 1 

NA D1 = subset(D,D$x>1) 

Count number of rows in data frame D COUNT(D) # select a 
column 

nrow(D) 

Count number of columns in data frame D COUNT(D) # select a row ncol(D) 
Put columns x and y side by side copy/paste them as you 

like 
cbind(x,y) 

Put rows x and y one on top of the other copy/paste them as you 
like 

rbind(x,y) 

Create a vector V with N zeros type 0, drag corner V = numeric(N) 
Create an empty matrix M with C columns 
and R rows (all "NA" = not available) 

type "NA", drag corner 
down to make column, 
then drag again rightward 
(or vice versa) 

M = matrix(ncol = C, nrow=R) 

Create the matrix  a c 
    b d 

type a, b, c, d into the 
appropriate cells 

1: matrix(c(a,b,c,d),nrow=2) 
2: matrix(c(a,b,c,d),ncol=2) 

Flip (transpose) n × m matrix M (n rows, 
m columns) into m × n matrix M' 

copy matrix, paste in new 
place using Paste Special 
(選擇性貼上) and 
Transpose (轉置) 

t(M) 

Add column names "A" & "B" to two-
column matrix M 

NA colnames(M) = c("A","B") 

Add row names "A" & "B" to two-row 
matrix M 

NA rownames(M) = c("C","D") 

Show column and row names of matrix M NA colnames(M); rownames(M) 
Show column names in data frame D NA 1: names(D) 

2: colnames(D) 
For vector x, find the ith position click on the appropriate 

cell 
x[i] 

For the data frame (or matrix) x, find the 
ith row and jth column 

click on the appropriate 
cell 

x[i,j] 

All values in data frame D on row x click row number x D[x,] 
All values in data frame D in ith column 
named "x" 

click column letter "x" 1: D[,i] # Using number 
2: D[,"x"] # Using name 

Show first six rows of data frame D scroll to the top of the 
sheet 

head(D) 



 3 

Show last six rows of data frame D scroll to the bottom of the 
sheet 

tail(D) 

Sort column x into alphanumerical order use A→Z dialog box sort(x) 
Sort columns x and y in data frame D into 
the order defined by x 

use A→Z dialog box 1: D[order(D$x),] 
2: library(dplyr) 
  arrange(D, x) 

Remove repeats in vector A sort column A, then in B2: 
IF(A2=A1,"",A2), drag 
down, copy/paste value, 
sort column B 

unique(A) 

Combine tables D1 and D2 by matching 
same-named column x 

use VLOOKUP cleverly merge(D1,D2) 

Combine smaller item, subject, and 
response files I, S, R into one large file 

use VLOOKUP cleverly merge(R,I) # Same item IDs 
merge(R,S) # Same subj IDs 

Create a list with number 1 and string "a" just type/paste into cells list(1,"a") # c() can't do this 
Create a list L of vectors (1,2) and (3,4,5) NA L = list(c(1,2),c(3,4,5)) 
Second element in first element in list L NA L[[1]][2] # e.g. = 2 for above 
Split vector or data frame X by factor F NA split(X,F) # Outputs a list 
Check if vector x elements are in vector y NA is.element(x,y) 
Remove elements that are in vector x from 
vector y 

NA 1: y[y!=x] 
2: setdiff(y,x) 

Cut continuous values in vector x into n 
equal-sized bins, creating new factor B 

NA B = cut(x,n) 

Logic 
True TRUE 1: TRUE 

2: T # never "true" or "t" 
False FALSE 1: FALSE 

2: F # never "false" or "f" 
If x is true then value y, otherwise value z IF(x,y,z) if (x) {y} else {z} 
If x is true then command y, otherwise 
command z 

NA if (x) {y} else {z} 

x equals y (true or false) x=y x==y 
x doesn't equal y (true or false) x<>y x!=y 
x and y (true only if both x and y are true) AND(x,y) x & y 
x or y (true if either x and/or y is true) OR(x,y) x | y 
Convert logical x into 0 (F) or 1 (T) if(x,1,0) 1: 1*x 

2: as.numeric(x) 
Functions and packages 
Add comment y after R code line x NA x # y 
Run command x, then command y NA 1: x 

   y 
2: x; y 

Repeat command x for n times (for-loop) NA for (i in 1:n) {x} # 1:n is vector! 
Print out "JM" one letter at a time NA for (i in c("J","M")) {print(i)} 
Create a new function Fun that takes 
argument x and outputs value y 

need to use VBA to create a 
macro (search web for help) 

Fun = function(x) { 
 return(y) 
} 

Compute means of rows in matrix M AVERAGE(row), drag down apply(M,1,mean) 
Find sum of columns in matrix M AVERAGE(col), drag right apply(M,2,sum) 
Compute by-subj means for variable x in 
data set D 
# or any one-argument function (e.g. sum) 

AVERAGE(x) # assumes 
subj defines rows (columns) 
and x values are in a matrix 

1: apply(D$x,D$subj,mean) 
2: library(dplyr) 
 summarize(group_by(D, subj), 
  mean(x)) 

Compute means for variable y when 
another variable x > 23 

AVERAGEIFS(y,x,">23") 
# assumes x and y are 
columns like in R 

mean(y[x>23]) 

  



 4 

Compute means for variable y for factors 
A (A1 vs. A2) & B (B1 vs. B2), and put 
them in a table 

DAVERAGE(database,field, 
criteria) 
# "database" = R-style data 
# "field" = factor name 
# "criteria" = minitable like: 
A B    (factor names) 
A1 B2   (one level each) 

tapply(y,list(A,B),mean) 
# more factors and more levels 
also work 

Compute means for variable y for all 
levels of factor A & B and their 
interaction, and put into data frame D with 
columns y, A, B 

N D=aggregate(y ~ A * B, mean) 
 

Read and run R code in local File NA 1: File/Source R code... menu 
2: source("File") 

Read and run R code at http://www/File NA source("http://www/File ") 
Install package P from http://www/P NA 1: Packages/Install package(s) menu 

2: install.packages("http://www/P") 
Load package P NA 1: library(P) # Error if no P 

2: require(P) # FALSE if no P 
Strings 
Concatenate strings "x" & "y" into "xy" "" & "y" paste("x","y",sep="") 
Number of characters in string x LEN(x) nchar(x) 
First n characters in string x LEFT(x,n) substring(x,1,n) 
Last n characters in string x RIGHT(x,n) substring(x,nchar(x)-n+1, nchar(x)) 
n characters in string x starting at a MID(x,a,n) substring(x,a,a+n-1) 
Characters a to b in string x MID(x,a,b-a+1) substring(x,a,b) 
Split string S at space " " Menu: Data / Text to 

columns 
unlist(strsplit(S," ")) 

Replace a with b everywhere in x 1: Menu: Home / Find / 
Replace 
2: SUBSTITUTE(x,a,b) 

gsub(a,b,x) 

Handling Unicode in Windows NA library(readr) 
read_lines() # instead of readLines() 
read_delim() # instead of read.delim() 

Basic math 
Round number x to y decimal places ROUND(x,y) round(x,y) 
Round x down to nearest integer ROUNDDOWN(x,0) floor(x) 
Round x up to nearest integer ROUNDUP(x,0) ceiling(x) 
Min, max, sum of vector x MIN(x), =MAX(x), 

=SUM(x) 
min(x); max(x); sum(x) 

Square root of x (√x) SQRT(x) sqrt(x) 
Range of vector x (min & max) MIN(x), =MAX(x) range(x) # Output is vector 
Square of x (x2) x^2 x^2 
Logarithm of x, base 10 LOG(x) log10(x) 
Natural log of x (base e = 2.718...) LN(x) log(x) 
ex (inverse of natural log) EXP(x) exp(x) # exp(log(x)) == x 
Graphs 
Make a graph 1: poke around chart menu 

(depends on Excel 
version) 
2: search the web (ditto 
below) 

1: plot, boxplot, etc 
2: install ggplot2 package: 
  library(ggplot2) 
  qplot(...) # Simple plots 
  ggplot(...) # Complex plots 

Get help with graphs 1: poke around chart menu 
2: search the web 

1: ?plot, ?boxplot, ?par 
2: search the web 

Make a scatterplot of vectors x and y poke around chart menu plot(x,y) 
Save a graph to a file export the Excel file as 

HTML, which puts graphs 
into a folder 

when graph window is open, use 
File/Save as menu 

  



 5 

Put six plots into a 2-row by 3-column 
arrangement 

lots of plotting 1:par(mfrow=c(2,3)) 
for(i in 1:6){plot(runif(10))} 
2:layout(matrix(1:6,nrow=2)) 
for(i in 1:6){plot(runif(10))} 

Make a scatterplot of vectors x and y with 
x-axis label "Age", y-axis label 
"Accuracy", with x values from 0.5 to 1 
and y values from 0 to 0.5 
# Same methods work for most plots, 
including histograms 

poke around chart menu plot(x,y, 
 xlab = "Age", 
 ylab = "Accuracy", 
 xlim=c(0.5,1), 
 ylim=c(0,0.5) 
) 

Make x & y scatterplot with no numbers poke around chart menu plot(x,y,xaxt="n",yaxt="n") 
Add horizontal line to existing plot at y=3 NA abline(h=3) 
Add vertical line to existing plot at x = 7 NA abline(v=7) 
Make a line plot of x (on x-axis) and y (on 
y-axis) 

poke around chart menu plot(x,y,type="l") 
# Make sure x is sorted first! 
# type="l": line; 
 # type="p" (points) default; 
 # ?plot for other types 
 # ?points pch for other dot  
 #  shapes 

Make a bar graph of crossed values of Y = 
a,b,c,d as a function of factors F= F1,F2 
and G = G1, G2 in matrix M, with y-axis 
starting at zero, and M and barplot like so: 
M:   Barplot:  [* G1 ] 
    F1  F2  * #   * # [# G2 ] 
G1  a   c  a b   c d 
G2  b   d  F1   F2 

adjust Excel's automatic 
y-axis to start it at zero 
(recommended by many 
statisticians to make scale 
clear); R acts like Excel 
here, in treating columns 
(F) as the main label (in 
names.arg) and rows (G) 
as legend label (in 
legend.test) 

1:M = matrix(c(a,b,c,d), 
   nrow=2) 
 barplot(M, beside=T, 
  names.arg=c("F1","F2"), 
  legend.text=c("G1","G2"), 
  ylab = "Y") 
2: search web or books for help on 
using ggplot2 

Make same bar graph as above, but use y-
axis range a to b, where a is not zero 

poke around chart menu barplot(M, beside=T, 
  legend.text=c("F1","F2"), 
  ylab = "Y", ylim=c(a,b), 
  xpd=F, # Keep bars inside 
  xaxt="n") # No x label yet 
axis(side=1, at=c(2,5),  
  labels=c("G1", "G2")) 
box(bty="l") # lower-case L 

Plot standard histogram of sample S (S = 
vector of numbers) 

Analysis toolbox: 直方圖 
# use about 10 equal-sized 
bins 

hist(S) 

Change number/size of bars in histogram 
for S (remember for histograms, bar area 
is what matters, not bar height) 

Analysis toolbox: 直方圖 
# enter different bins 

1: hist(S, breaks=3) # 3 bars 
2: hist(S, breaks=c(0,10)) 
# Breaks at points 0 and 10 

Make box (and whiskers) plot NA boxplot(...) # cf. ?boxplot 
Plot density of sample S NA plot(density(S)) 
Make line plot with solid line for variable 
x1 and dashed line for variable x2 with 
dependent variable y 

poke around chart menu plot(x1,y,type="l") 
lines(x2,y,lty=2) 
 # lty is line type 
 # lty=1 (solid) is default 
 # lty=2 is dashed 
 # lty=3 is dotted 
 # lwd=2 is wider 

Add a legend at the top right for a line plot 
showing that the solid line represents Cats 
and the dashed line represents Dogs 

poke around chart menu legend("topright", 
 lty=c(1,2), 
 legend=c("Cats","Dog")) 

  



 6 

Add upper + lower error bars to bar plot B 
with n means M (vector), where each half 
of the error bar has length E (e.g., E = 1 
sd, or E = SE, or E = one half of the 95% 
confidence interval) 

make bar plot, search 
menu for error bars, enter 
values you want 

1:source("http://www.ccunix. 
 ccu.edu.tw/~lngproc/ 
 errorbar_Rcode.txt") 
 E.bars = rep(E,n) 
 error.bar(B,M,E.bars) 
2: library(ggplot2) 
 B + geom_errorbar( 
  aes(ymin=M-E, 
   ymax=M+E)) 

Add linear regression line to scatter plot (x 
on x-axis, y on y-axis) 

right-click dots, choose 加

上趨勢線, then keep 線性 
default 

plot(x,y) 
abline(lm(y~x)) 

Add local regression line to scatter plot (x 
on x-axis, y on y-axis) 

right-click dots, choose 加

上趨勢線, then choose 移

動平均 

plot(x,y) 
lines(predict(loess(y~x))) 
# sort x first 

Make trellis plot for scatterplot y ~ x1 * 
x2 (y, x1, x2 all numerical, and you want 
to visualize the x1 × x2 interaction) in data 
frame D, with linear best-fit lines for each 

sort data by x1, divide x1 
into a few (3-6) subsets, 
plot y~x2 for each subset 
(like method 3 for R) 

1: library(lattice) 
 x1.eq = equal.count(D$x1) 
 xyplot(D$y ~ D$x2 | x1.eq, 
  panel = function(x, y) { 
   panel.xyplot(x, y) 
   panel.abline(lm(y~x)) 
  } 
 ) 
2: library(ggplot2) 
 D$x1cuts = cut(D$x1, 7) 
 qplot(y, x2, data=D,  
  facets=~x1cuts) + 
   stat_smooth(method 
    ="lm") 
3: par(mfrow=c(2,3))#6 plots 
 D = D[order(D$x1),] 
 N = nrow(D) 
 n = ceiling(N/6) 
 rangey = range(D$y) 
 rangex2 = range(D$x2) 
 for (i in 1:6) { 
  minx1 = D$x1[n*(i-1)+1] 
  maxx1=D$x1[min(n*i,N)] 
  D.i = subset(D, 
   (D$x1 >= minx1 & 
   D$x1 <= maxx1)) 
  plot(D.i$x2, D.i $y,  
   xlab="x2", ylab="y", 
   main = paste("x1:  
    from",minx1, 
    "to",maxx1)) 
   abline(lm(y~x2,  
    data=D.i)) 
 } 

  



 7 

Make trellis plot for scatterplot of y ~ x 
with linear best-fit lines, with grouping 
unit g (y & x numerical) in data frame D 
# Useful for LME and GLMM too 

sort data by g, plot y~x for 
each g (like method 3 for 
R) 

1: library(lattice) 
  xyplot(y ~ x | factor(g), 
   data = D) 
2: library(ggplot2) 
  qplot(x, y, data=D, 
   facets = ~g) + 
   stat_smooth(method 
    ="lm") 
3: par(mfrow=c(n,m)) 
 # n & m divide up g neatly 
 rangex = range(D$x) 
 rangey = range(D$y) 
 for (i in 1:length(g)) { 
  D.i=subset(D,D[D$g==i]) 
  plot(D$x, D$y, main = i, 
   xlim = rangex, 
   ylim=rangey) 
 } 

Make 3D scatterplot (x on x-axis, y on y-
axis, z on z-axis) 

NA library(rgl) 
plot3d(x,y,z) 

Make 3D scatterplot, split into a series of 
2D scatterplots (x & y = independent 
variables, z = dependent variable) 

NA library(ggplot2) 
y.cut = cut(y, 7) 
qplot(z, x, facets = ~y.cut) 

Make mosaic plot of contingency table T NA mosaicplot(T) 
Plot logistic regression model L for y~x sort data by x, divide y 

into bins, within each bin 
convert y to logits: 
LN(AVERAGE(y)/ 
 (1-AVERAGE(y)) 
make scatterplot of 
logit(y)~x, 
right-click dots, choose 加

上趨勢線, then keep 線性 
default 
# Like method 2 for R 

1: plot(x,y) 
  curve(predict(L, 
   data.frame(x=x), 
   type="response"), 
   add=T) 
2: bins = cut(x,10) # Or more 
  logit.bin = function(x){ 
   prob1 = mean(c(x,0,1)) 
   prob0 = 1-prob1 
   return(log(prob1/prob0)) 
  } 
  meanx = tapply(x, bins,  
   mean) 
  logity = tapply(y, bins,  
   logit.bin) 
  plot(meanx, logity) 
  abline(lm(logity~meanx)) 

Descriptive statistics 
Make a frequency table for sample S 1: Analysis toolbox: 直方

圖 
2: see handout for word 
frequency example 

1: xtabs(~S) 
2: table(S) 

Make a frequency table cross-classified by 
factors x and y (x = row, y = columns) 

basically do it by hand 1: xtabs(~x+y) 
2: table(x,y) 

Mean of sample S 1: AVERAGE(S) 
2: SUM(S)/COUNT(S) 

1: mean(S) 
2: sum(S)/length(S) 

Median of sample S MEDIAN(S) median(S) 
Mode of sample S MODE(S) as.numeric(names(sort( 

 -table(S)))[1]) # Handout code 
doesn't work (sorry) 

Sample standard deviation of sample S STDEV(S) 
 

1: sd(S) 
2: sqrt(sum((S-mean(S))^2)/ 
  (length(S)-1)) 

Sample variance of sample S 1: VAR(S) 
2: STDEV(S)^2 

1: var(S) 
2: sd(S)^2 



 8 

Randomness and permutations 
Reset randomizer Microsoft won't say set.seed(1) # or any number 
Given x things, calculate how many ways 
to choose y things 

COMBIN(x,y) choose(x,y) 

Randomly select x values between 0 and 1 
with equal probability 

copy and paste RAND() x 
times 

runif(x) 

Randomly select x values from a normal 
(Gaussian) distribution with mean M and 
standard deviation s 

Analysis toolbox: 
亂數產生器 

rnorm(x,M,s) 

Distributions 
Plot normal distribution with mean M and 
standard deviation s from SD = -3 to +3 

create close z values from 
-3 to +3, use 
NORMDIST(z, 1 ,0, 
FALSE) to get density 
instead of probability, 
make line graph 

1: curve(dnorm(x), -3, 3) 
2: plot(function(z)  
   dnorm(z),-3, 3) 

z score of item x in sample S with mean M 
and standard deviation s 

STANDARDIZE(x,M,s) 1: (x-M)/s 
2: scale(S)[S==x] 

Probability of getting at most x heads in y 
coin flips (50% probability, x < y/2) 

BINOMDIST(x,y,0.5,TR
UE) 

pbinom(x,y,0.5) 

Area to the left of z score in standard 
normal distribution (mean = 0, SD = 1) 

NORMSDIST(z) pnorm(z) 

z score that marks area p to its left in 
standard normal distribution 

NORMSINV(p) qnorm(p) 

Make quantile-quantile norm plot of 
sample S 

sort S from smallest to 
largest, number from i = 1 
to n; define expected 
normal curve E with 
NORMSINV((i-0.5)/n); 
make a scatterplot of S vs. 
E 

qqnorm(S) 

Add line to QQ-norm plot (Excel and R 
don't add quite the same type of line) 

right click any dot in QQ-
plot, select 加上趨勢線 
# adds best-fit line 

qqline(S) 
# draws line between first and third 
quantiles of ideal 

One-tailed p value for given t value and df T.DIST(ABS(t), df, 
TRUE) 

pt(-abs(t), df) 
 # pt assumes a negative t! 

Two-tailed p value for given t value and df 2*TDIST(ABS(t), df, 
TRUE) 

2*pt(-abs(t), df) 

Plot t distribution with given df T.DIST(t,df,FALSE) plus 
cleverness 

curve(dt(x,df),-3,3) 

One-tailed p value for given F, df1 & df2 
(as used in ANOVA and ratio tests) 

FDIST(F,df1,df2) # Right 
side 

1: pf(F,df1,df2,lower.tail=F) 
2: 1-pf(F,df1,df2) 

Plot F distribution with given df1 & df2 FDIST and cleverness curve(df(x,df1,df2),0,5) 
One-tailed p value for given χ2 & df (as 
used in chi-squared tests and elsewhere) 

CHIDIST(χ2,df) 1: pchisq(χ2,df,lower.tail=F) 
2: 1- pchisq(χ2,df) 

Plot χ2 distribution with given df CHIDIST and cleverness curve(dchisq(x,df),0,10) 
One-tailed p value for at most x heads in n 
fair coin flips (binomial distribution) 

BINOMDIST(x,n,0.5,TR
UE) 

pbinom(x,n,0.5) 

Plot binomial distribution for above n BINOMDIST(x,n,0.5,FAL
SE) and cleverness 

plot((0:n),dbinom((0:n), 
 size=n, prob=0.5)) 

Factors 
Convert vector S into a factor 
# Crucial to do this before 
# repeated-measures ANOVA using aov 

NA as.factor(S) 

  



 9 

Convert factor F into an ordinal factor NA 1: F = ordered(F) 
2: F = factor(F, ordered = T) 
# Creates polynomial coding: 
# F.L = linear component; 
# F.Q = F^2 (quadratic) 
# F.C = F^3 (cubic) 

Relevel factor F (levels A and B) so that B 
is the reference level (0 in dummy coding) 

NA F = relevel(F,"B") 

Convert factor F (levels A, B, C) into 
effect (sum) coding, splitting F into FB 
(A=0, B=1, C=-1) and FC (A=0, B=-1, 
C=1) # Effect coding is better if you want 
to test interactions with F 

NA contrasts(F) =  
 contr.sum(levels(F)) 

Convert factor F (levels A, B) into effect 
(sum) coding, changing F into FA (A=1, 
B=-1) 

NA contrasts(F) =  
 contr.sum(levels(F)) 

Convert factor F (levels A, B) into effect 
(sum) coding, changing F into FB (A=-1, 
B=1) # Safer than above, in my experience 

NA FB = 2*(F=="B")-1 

z, t, and F tests 
Two-tailed p value for one-sample z test 
with population μ and σ and sample S 

z = (AVERAGE(S)-μ) / 
 (σ/SQRT(COUNT(S))) 
p = 2*NORMSDIST(-
ABS(z)) 

z = (mean(S)-μ) / 
 (σ/sqrt(length(S))) 
p = 2*pnorm(-abs(z)) 

Two-tailed p value for one-sample t test 
with population μ and sample S 

t = (AVERAGE(S)- μ)/ 
   (STDEV(S)/ 
   SQRT(COUNT(S))) 
p =TDIST(ABS(t), 
   COUNT(S)-1,2) 

1: t = (mean(S)-μ) / 
   (sd(S)/sqrt(length(S))) 
  p = 2*pt(-abs(t), 
   df=length(S)-1) 
2: t.test(S,mu=μ) 

Unpaired t test assuming equal variance 
(homoscedastic) for a vs. b (levels of 
factor X, with dependent variable Y) 

Analysis toolbox: 
t 檢定：兩個母體平均數

差的檢定，假設變異數相

等 

1: t.test(a, b, var.equal=T) 
2: t.test(Y~X, var.equal=T) 

Unpaired t test not assuming equal 
variance (heteroscedastic) for a vs. b 
(levels of X, with dependent variable Y) 

Analysis toolbox: 
t 檢定：兩個母體平均數

差的檢定，假設變異數不

相等 

1: t.test(a,b) 
2: t.test(Y~X) 

Paired t test for a vs. b (levels of factor 
X, with dependent variable Y) 

Analysis toolbox: 
t 檢定：成對母體平均數差

異檢定 

1: t.test(a, b, paired=T) 
2: t.test(Y~X, paired=T) 

One-tailed p value for a certain F value 
and dfnumerator and dfdenominator 

FDIST(F, dfn, dfd) 1: 1 - pf(F, dfn, dfd) 
2: pf(F, dfn, dfd, lower.tail=F) 

One-tailed F test to test if samples a and 
b come from populations with equal 
variances, where sa > sb 

Analysis toolbox: 
F 檢定：兩個常態母體變

異數的檢定 (a must be to 
the left b) 

1: 1 - pf(F, dfa, dfb) 
2: pf(F, dfa, dfb, lower.tail=F) 

Two-tailed F test to test if samples a and 
b come from populations with equal 
variances 

FTEST(a, b) var.test(x, y) 

95% confidence interval for t tests Run analysis toolbox, get 
critical value and variance 
to compute using handout 
formulas 

t.test(...) gives upper and lower 
value of confidence interval 
automatically; to use in graph, 
must find half its range: (max-
min)/2 

  



 10 

x% confidence interval for t tests Run analysis toolbox using 
alpha = 1-x/100, get critical 
value and variance to 
compute using handout 
formulas 

t.test(..., conf.level = x/100) gives 
x% confidence interval 
automatically 

Correlation and linear regression analysis 
Pearson's correlation coefficient r (for 
variables x and y) 

CORREL(x,y) cor(x,y) 

Test significance of Pearson's correlation 
coefficient (between x and y) 

use correl-sig.xls or search 
the Web for tools 

1: cor.test(x, y) 
2: summary(lm(y~x)) 

Multiple linear regression (y = dep; x1, x2 
= indeps), with data in D 

Analysis toolbox: 
迴歸 

summary(lm(y~x1+x2, data=D)) 
# data argument also used below 

Likelihood ratio test for fit of simpler 
model L0 vs. fit of more complex L1 

NA anova(L0,L1) 
# L0 and L1 created by lm(...) 

Test significance of indep x1 in linear 
model y ~ x1 + x2 

Analysis toolbox: 
迴歸 

1: summary(lm(y~x1+x2)) 
2: anova(M.no_x1,M.has_x1) 

Stepwise regression for y~x1+x2 in 
dataframe D 

NA attach(D) 
base.lm = lm(y~1) 
summary(step(base.lm,y~x1+x2)) 

Test independent variables x1, x2, x3 for 
collinearity in dataframe D (dependent 
variable = y) 

Analysis toolbox: 迴歸 
Then compute R2 for 
x1~x2+x3, then use VIF 
formula in handout 

1: library(car) 
   vif(lm(y~x1+x2+x3)) 
   # < 5 is good 
2: kappa(D[c("x1","x2","x3")]) 
   # < 30 is good 
3: library(languageR) 
   collin.fnc(D[c("x1", "x2", 
    "x3"))$cnumber 

Get predictions (y-hat) of simple linear 
model predicting y from x for new data x' 

FORECAST(x',y,x) 
# x' is just one value 

predict(lm(y~x), newdata = 
data.frame(x')) 
# x' is a vector; also works for 
multiple regression 

Get residuals of a linear model L for 
dependent variable Y 

Analysis toolbox: 迴歸, 
then use coefficients to 
write equation to predict y-
hat, then subtract y-hat 
from real values Y 

1: resid(L) 
2: Y-predict(L) 

Standardize regression coefficients for 
regression model y ~ x1 + x2 (also works 
for generalized linear models and mixed-
effects models) 

1: Use STANDARDIZE  
  on x1 & x2  then  
  Analysis toolbox: 迴歸  
  on these z scores 
2: Analysis toolbox: 迴歸, 
  then for x1 coefficient  
  B1: B1 * STDEV(x1) / 
STDEV(y) # Same for x2 

1: summary(lm(y ~ scale(x1) +  
  scale(x2) 
2: For x1 coefficient B1: 
  B1*sd(x1)/sd(y) # Same for x2 

Repeated-measures regression y~x with 
grouping variable g in data frame D (also 
applies to logistic & Poisson regression), 
where B= by-unit coefficients (e.g., B = 
B0 for intercept, or B = B1 for x slope) 

Analysis toolbox: 迴歸 
AVERAGE(B) # Coef. 
STDEV(B) # SE 
# t, df, p from one-sample  
# t test (see above) 

B.coef = numeric(length(g)) 
for (i in 1:length(g)) { 
 D.i = subset(D,D[D$g==i]) 
 lm.i = lm(y~x, data=D.i) 
 B.coef[i] = summary(lm.i) 
  $coefficients["B","Estimate"] 
} 
t.test(B.coef) # gives all but SE 
# I'll add SE info after HW3... 

ANOVA 
One-way independent-measures ANOVA 
(y = dependent; x = independent) 

Analysis toolbox: 
單因子變異數分析 

1: summary(aov(y ~ x)) 
2: anova(lm(y ~ x)) 

  



 11 

Two-way independent-measures ANOVA 
(y = dependent; x1, x2 = independents) 

Analysis toolbox: 
雙因子變異數分析：重複試

驗 

1: summary(aov(y ~ x1*x2)) 
2: anova(lm(y ~ x1*x2)) 

One-way repeated-measures ANOVA (y = 
dependent; x = indep; S= grouping unit) 

Analysis toolbox: 
雙因子變異數分析：無重複

試驗 

S = as.factor(S) # Make sure! 
summary(aov(y ~ x + Error(S/x))) 

Two-way repeated-measures ANOVA (y = 
dep; x1, x2 = indeps; grouped by S) 

use repeated-measures 
regression by hand 

summary(aov(y ~ x1*x2 
+Error(S/(x1*x2)))) 

One type of mixed ANOVA (y = dep; x1 = 
between-group indep; x2 = within-group 
indep, grouped by S) 

probably NA 1: summary(aov(y ~ x1*x2  
  +Error(S/x2))) 
2: library(ez) # Likewise 
above 
  ezANOVA(dv = y, wid = S, 
  within = x2, between = x1) 

Tukey HSD test [formula = any ANOVA 
formula, e.g. y~x, or y~x+Error(S/x)] 

use equation in handout and 
find table of Studentized range 
statistic q on the Web 

1: TukeyHSD(aov(formula)) 
2: library(emmeans) 
  emmeans(aov(formula), 
   list(pairwise~x), 
   adjust="tukey") 

Correct for sphericity violations in 
repeated-measures ANOVA in factors with 
more than two levels (y = dep; x = within-
group indep with 3 or more levels; S = 
grouping unit; df = dfdenominator) 

NA library(ez) 
ezANOVA(dv = y, wid = S, 
  within = x) 
# HFe = Huynh-Feldt epsilon  
# p[HF] = its p value 
# correct df = original df * 
HFe 

Compute minF' for independent variable 
x, using the following ANOVA results: 
By-participant ANOVA: 
 x.F1: F value for x 
 x.dfn1: df for x levels (numerator) 
 x.dfd1: df for random (denominator) 
By-item ANOVA: 
 x.F2: F value for x 
 x.dfn2: df for x levels (numerator) 
 x.dfd2: df for random (denominator) 
Then you get the following: 
 minF.F: minF' 
 minF.dfn: df for x levels 
 minF.dfd: df for random 
 minF.p: p value 

minF.F =  
 (x.F1*x.F2/(x.F1+x.F2) 
minF.dfn = x.dfn1 # (= xdfn2) 
minF.dfd =  
 (x.F1+x.F2)^2 
  / (x.F1^2/x.dfd2 +  
    x.F2^2/x.dfd1) 
minF.p = FDIST(minF.F,  
 minF.dfn, minF.dfd) 

minF.F =  
 (x.F1*x.F2/(x.F1+x.F2) 
minF.dfn = x.dfn1 # (= xdfn2) 
minF.dfd =  
 (x.F1+x.F2)^2 
  / (x.F1^2/x.dfd2 +  
    x.F2^2/x.dfd1) 
minF.p = pf(minF.F, minF.dfn,  
 minF.dfd, lower.tail=F) 

Contingency tables (and other simple categorical tests) 
one-tailed p value for binomial test on 
getting at most x in n binary events 

BINOMDIST(x,n,0.5,TRUE) 1: pbinom(x, n, 0.5) 
2: binom.test(x,n,alternative="left") 

One-way chi-squared test on vector V, 
where H0: all counts the same 

CHITEST(observed,expected) 
# Must compute expected first 

chisq.test(V) 

One-way chi-squared test on vector V, 
where H0: counts = vector W 

CHITEST(observed,expected) 
# Also, only gives p value 

chisq.test(V, p = W) 

Two-way chi-squared test for column × 
row interaction in 2 × 2 matrix M 

CHITEST(observed,expected) 
# Doesn't use Yate's correction 

1: chisq.test(M) # With Yate's 
2: summary(as.table(M)) 
# Without Yate's correction 

Two-way chi-squared test for column × 
row interaction in larger matrix M 

CHITEST(observed,expected) 
# Basically, forget this method 

1: chisq.test(M) 
2: summary(as.table(M)) 
# Same: Yate's irrelevant 

Two-tailed p value testing for column × 
row interaction in contingency table M 

NA fisher.test(M) 

Exact McNemar test for paired binary 
data, with a (1,0) pairs and b (0,1) pairs 

BINOMDIST(MIN(a,b), a+b,  
 0.5, TRUE) 

pbinom(min(a,b), a+b, 0.5) 



 12 

Logistic regression (and other generalized linear models) 
Convert probability P into log odds 
(logit) 

LN(P/(1-P)) 1: ln(P/(1-P)) 
2: library(gtools) 
  logit(P) 

Convert log odds L into probability EXP(L)/(1+EXP(L)) 1: exp(L)/(1 + exp(L)) 
2: library(gtools) 
  inv.logit(L) 

Logistic regression model y ~ x1+x2 (y is 
binary variable, all data are independent), 
with data in data frame D 

NA glm(y~x1+x2,  
 family=binomial, data = D) 
# data argument also below 

Show coefficients table for logistic 
regression model L 

NA summary(L) 
# p-values based on Wald test 

Predict log odds from logistic regression 
model L 

NA predict(L) 

Predict binary observations (0 vs. 1) from 
logistic regression model L 

NA predict(L, type="response") 

Likelihood ratio test for simpler 
generalized linear regression model L0 
vs. more complex L1 (applies to both 
logistic regression and Poisson 
regression) 

NA anova(L0, L1 test="Chisq") 

Test parameter x1 of logistic regression 
model y~x1+x2 using likelihood ratio test 

NA L1 = glm(y~x1+x2,  
 family=binomial) 
L0 = glm(y~x2,  
 family=binomial) 
anova(L0, L1 test="Chisq") 

Ordinal logistic regression y~x (y is 
ordinal variable, all data are independent) 

NA library(MASS) 
summary(polr(y ~ x) 
# Table compares each level 
# with next level 

Multinomial logistic regression y~x (y 
has three nominal values "A", "B", "C", 
all data independent) 

# Wald test only: 
z = B/SE 
p = 2*NORMSDIST( 
-ABS(z)) 
# Likewise below 

library(nnet) 
summary(multinom(y ~ x)) 
# Table treats A as baseline 
# Wald test for each row: 
z = B/SE # B = coefficient 
p = 2*pnorm(-abs(z)) 

Poisson regression y ~ x (y is count data) NA summary(glm(y~x, family=poisson)) 
Mixed-effects modeling (linear and generalized linear) 
Maximal one-random-factor LME: 
 y = dependent (continuous, normal) 
 x1, x2 = independent 
 g = grouping unit (x1 grouped by g) 

NA 1: library(nlme) 
  lme(y~x1+x2, random = ~x1|g) 
2: library(lme4) # Assumed elsewhere below 
  lmer(y~x1+x2 + (x1|g)) 

Show results of LME model L NA summary(L) 
# lme shows p, lmer doesn't 
# Always build/name model first, before using summary 
# because the model may take a long time to build 

Get p values for LME model derived 
from formula structure y ~ x + (x|g) 

NA 1: Trust lme output (controversial) 
2: 2*pnorm(-abs(t)) # Claims t = z (needs large N) 
3: library(afex) # Loads lme4 for you 
  L = mixed(y ~ x + (x|g)) # Kenward-Roger p 
  summary(L) 
4: library(afex) # Loads lme4 for you 
  # Likelihood ratio tests (needs large N) 
  L = mixed(y ~ x + (x|g), method="LRT") 
  summary(L) 
# method="PB" not working for afex's mixed function; 
# Forget about lmerTest (worse than Kenward-Roger, 
# changes summary.lmer behavior) 

  



 13 

Maximal two-random-factor additive LME 
(recommended by Barr et al., 2013): 
 y = dependent (continuous, normal) 
 x1, x2 = independent 
 g1 = grouping unit for x1 (random effect) 
 g2 = grouping unit for x2 (random effect) 

NA 1: lmer(y~x1+x2 + (x1|g1) + (x2|g2)) 
2: lmer(y~x1+x2 + (1+x1|g1) + (1+x2|g2)) 
  # R assumes the intercepts automatically 

Maximal one-random-factor LME with 
interaction: 
 y = dependent (continuous, normal) 
 x1, x2 = independent 
 g = grouping unit for x1 & x2 

NA lmer(y~x1*x2 + ((x1*x2)|g)) 

Likelihood ratio test to compare fit of 
simper LME model L0 vs. complex L1 

NA anova(L0,L1) 

Likelihood ratio test for above to see if 
random g2 variable is really necessary 
(not recommended by Barr et al., 2013, but 
cf. Raaijmakers et al., 1999) 

NA L.1.2 = lmer(y~x1+x2 + (x1|g1) + (x2|g2)) 
L.1 = lmer(y~x1+x2 + (x1|g1)) 
anova(L.1, L.1.2) 

LME without random intercepts (if 
maximal model fails to converge) 
# This and below also work for GLMM 

NA lmer(y~x + (x|g)) # Maximal model 
lmer(y~x + (0+x|g)) # Next-best model 

LME without random intercept × slope 
interaction (if above also fails) 

NA lmer(y~x + (0+x|g) + (1|g)) # Slope & intercept separate 

LME without random slopes (if all fails) NA lmer(y~x + (1|g)) # Worst LME model (Barr et al., 2013) 
Maximal one-random-factor mixed-effects 
logistic regression (a kind of GLMM): 
 y = dependent (binary) 
 x1, x2 = independent 
 g = grouping unit (x1 grouped by g) 

NA 1: library(MASS) 
  glmmPQL(y~x1+x2, random=~x1|g, family=binomial) 
2: library(lme4) # Assumed elsewhere below 
  glmer(y~x1+x2+(x1|g), family=binomial) 

Maximal two-random-factor mixed-effects 
logistic regression: 
 y = dependent (binary) 
 x1, x2 = independent 
 g1 = grouping unit for x1 (random effect) 
 g2 = grouping unit for x2 (random effect) 

NA glmer(y~x1+x2 + (x1|g1) + (x2|g2), family=binomial) 
 

Likelihood ratio test to compare fit of 
simper GLMM model L0 vs. more 
complex L1 

NA anova(L0, L1, test="Chisq") 

 


