Updated 2022/5/4

Many useful Excel and R functions
Notes: NA = not applicable; 1:, 2: ... = alternative methods to do the same thing; # ... = comments if necessary

Description

| Excel (Calc usually too)

| R

Getting started

Install program

you probably already have
it

http://cran.r-project.org/

Update program

spend money

1: http://cran.r-project.org/

2: Within R (Windows):

install, move, update, quit:
if(!require(installr))

{ install.packages("installr");requir
e(installr)}

updateR(F, T, T, F, T, F, T)

Run command C

=C # "=" everywhere
below too

C # no need for "=" before it

Get help on function x

1: click fx symbol, find
function,

double-click it, click B4
e

2: search the web

1: 7x # Needs exact match
2: help("x") # same as ?7x

3: 77x # Fuzzy match

4: search the web

Usage shows syntax and

defaults; Arguments shows
input; Value shows output

Get help on general function F that works
differently for object types A vs. B

NA

7F.A vs. 7FEB
For example:
?summary.lm
?summary.glm
?summary.aov
?summary.table
7plot.table

Put value V into variable x

type V into cell x

l:x=V
2:x<-V
3:V->x

Put value V into both x and y

type V into cell x, drag to
y

x =y =V # Cool!

Load tab-delimited file "F" into data frame
D, first row as variable names

1: copy/paste from text
file
2: open file within Excel

1: D =read.delim("F")
2: D = read.table("F",T)

Load tab-delimited file on the web at

use File/Open, then

D =read.delim("http://www /F ")

http://www/F into data frame D write/paste
http://www /F
Load space-delimited file "F" into data same as above, but then 1: D = read.table("F",T)
frame D, first row as variable names split by 2: D =read.delim("F",sep="")
space (ZE1%)

Load comma-delimited file "F" into data
frame D, first raw as variable names

1: open within Excel,
splitting columns by ","
2: copy/paste from text

file, then split columns by

nn
)

1: D =read.csv("F")
2: D =read.table("F",
sep=",", header=T)

Object x inside object O (e.g. data frame)

click appropriate row or
column

1: O$x

2: attach(O); x; detach(O)
#"$" also applies to function
outputs, e.g.:
summary(Im(y~x))$residuals

Show the local file directory

NA

dir()

Timing script S

NA

now = proc.time()

proc.time() - now

Vectors, matrices, lists and data frames

Create the vector of numbers x, y, z X, Y, z in adjacent cells c(x,y,2)
(vertical or horizontal)

Omit NA (not available) data in object O Math functions na.omit(O)
automatically ignore
strings like "NA"

Create number series 1, 2, ... n type 1 & 2, select, then I:n

drag lower right corner

Create number sequence 1, 3, 5,..., n

type 1 & 3, then drag
corner

seq(1,n,by=2)

Repeat number x for n times

drag cell with x from
corner

rep(x,n)

Add 1 to the numbers 2,5,7 to get 3,6,8 NA 1+c(2,5,7) # grammatical!
Number of values in vector x COUNT(x) # only length(x) # numbers or strings (all
numbers same type)

Number of values in vector x that are
greater than y

COUNTIF(x,">y")

length(x[x>y])

Convert number X into string "x"
g

TEXT(X,"#.##") # 2
decimals

as.character(x)

Look up x in table T, find what's in VLOOKUP(x,T,C,FALSE | C[T==x]
column C (in x's row))
Create data frame D with columns x & y NA D = data.frame(x,y)
Create data frame D1 that's a subset of NA D1 = subset(D,D$x>1)
data frame D, such that x > 1
Count number of rows in data frame D COUNT(D) # select a nrow(D)
column
Count number of columns in data frame D | COUNT(D) # select a row | ncol(D)
Put columns x and y side by side copy/paste them as you cbind(x,y)
like
Put rows x and y one on top of the other copy/paste them as you rbind(x,y)

like

Create a vector V with N zeros

type 0, drag corner

V = numeric(N)

Create an empty matrix M with C columns
and R rows (all "NA" = not available)

type "NA", drag corner
down to make column,
then drag again rightward
(or vice versa)

M = matrix(ncol = C, nrow=R)

Create the matrix ac
bd

type a, b, ¢, d into the
appropriate cells

1: matrix(c(a,b,c,d),nrow=2)
2: matrix(c(a,b,c,d),ncol=2)

Flip (transpose) n x m matrix M (n rows,
m columns) into m X n matrix M'

copy matrix, paste in new
place using Paste Special

(M)

(EEEMERE E) and

Transpose (fEE)
Add column names "A" & "B" to two- NA colnames(M) = ¢("A","B")
column matrix M
Add row names "A" & "B" to two-row NA rownames(M) = ¢("C","D")
matrix M
Show column and row names of matrix M | NA colnames(M); rownames(M)
Show column names in data frame D NA 1: names(D)

2: colnames(D)

For vector x, find the ith position

click on the appropriate
cell

x[i]

For the data frame (or matrix) x, find the click on the appropriate x[1,j]
ith row and jth column cell
All values in data frame D on row x click row number x D[x,]

All values in data frame D in ith column
named "x"

click column letter "x"

1: D[,i] # Using number
2: D[,"x"] # Using name

Show first six rows of data frame D

scroll to the top of the
sheet

head(D)

Show last six rows of data frame D scroll to the bottom of the | tail(D)
sheet
Sort column x into alphanumerical order use A—Z dialog box sort(x)
Sort columns x and y in data frame D into | use A—Z dialog box 1: D[order(D$x),]

the order defined by x

2: library(dplyr)
arrange(D, x)

Remove repeats in vector A

sort column A, then in B2:
IF(A2=A1,"",A2), drag
down, copy/paste value,
sort column B

unique(A)

Combine tables D1 and D2 by matching use VLOOKUP cleverly merge(D1,D2)
same-named column x
Combine smaller item, subject, and use VLOOKUP cleverly merge(R,I) # Same item IDs

response files I, S, R into one large file

merge(R,S) # Same subj IDs

Create a list with number 1 and string "a"

just type/paste into cells

list(1,"a") # c() can't do this

Create a list L of vectors (1,2) and (3,4,5)

NA

L = list(c(1,2),c(3,4,5))

Second element in first element in list L NA L[[1]]]2] # e.g. = 2 for above
Split vector or data frame X by factor F NA split(X,F) # Outputs a list
Check if vector x elements are in vectory | NA is.element(x,y)
Remove elements that are in vector x from | NA I: yly!=x]
vector y 2: setdiff(y,x)
Cut continuous values in vector x into n NA B = cut(x,n)
equal-sized bins, creating new factor B
Logic
True TRUE 1: TRUE

2: T # never "true" or "t"
False FALSE 1: FALSE

2: F # never "false" or "f"
If x is true then value y, otherwise value z | IF(x,y,z) if (x) {y} else {z}
If x is true then command y, otherwise NA if (x) {y} else {z}
command z
x equals y (true or false) X=y X==y
x doesn't equal y (true or false) x>y x!=y
x and y (true only if both x and y are true) | AND(x,y) x&y
x or y (true if either x and/or y is true) OR(x,y) x|y
Convert logical x into 0 (F) or 1 (T) if(x,1,0) I: 1*x

2: as.numeric(x)
Functions and packages
Add comment y after R code line x NA x#y
Run command x, then command y NA 1:x

y
2:x;y

Repeat command x for n times (for-loop) NA for (iin 1:n) {x} # l:n is vector!
Print out "JM" one letter at a time NA for (iin c("J","M")) {print(i)}

Create a new function Fun that takes
argument x and outputs value y

need to use VBA to create a
macro (search web for help)

Fun = function(x) {
return(y)

Compute means of rows in matrix M

AVERAGE(row), drag down

apply(M, 1,mean)

Find sum of columns in matrix M

AVERAGE(col), drag right

apply(M,2,sum)

Compute by-subj means for variable x in
data set D
or any one-argument function (e.g. sum)

AVERAGE(x) # assumes
subj defines rows (columns)
and x values are in a matrix

1: apply(Dx,DSsubj,mean)
2: library(dplyr)
summarize(group_by(D, subj),
mean(x))

Compute means for variable y when
another variable x > 23

AVERAGEIFS(y,x,">23")
assumes x and y are
columns like in R

mean(y[x>23])

Compute means for variable y for factors | DAVERAGE(database,field, | tapply(y,list(A,B),mean)
A (Al vs. A2) & B (B1 vs. B2), and put criteria) # more factors and more levels
them in a table # "database" = R-style data also work
"field" = factor name
"criteria" = minitable like:
A B (factor names)
Al B2 (one level each)
Compute means for variable y for all N D=aggregate(y ~ A * B, mean)
levels of factor A & B and their
interaction, and put into data frame D with
columns y, A, B
Read and run R code in local File NA 1: File/Source R code... menu
2: source("File")
Read and run R code at http://www/File NA source("http://www/File ")
Install package P from http://www/P NA 1: Packages/Install package(s) menu
2: install.packages("http://www/P")
Load package P NA 1: library(P) # Error if no P
2: require(P) # FALSE if no P
Strings
Concatenate strings "x" & "y" into "xy" | "" & "y" paste("x","y",sep="")
Number of characters in string x LEN(x) nchar(x)
First n characters in string x LEFT(x,n) substring(x,1,n)
Last n characters in string x RIGHT(x,n) substring(x,nchar(x)-n+1, nchar(x))
n characters in string X starting at a MID(x,a,n) substring(x,a,a+n-1)

Characters a to b in string X

MID(x,a,b-a+1)

substring(x,a,b)

Split string S at space " "

Menu: Data / Text to

unlist(strsplit(S," "))

columns
Replace a with b everywhere in x 1: Menu: Home / Find / | gsub(a,b,x)
Replace
2: SUBSTITUTE(x,a,b)
Handling Unicode in Windows NA library(readr)
read lines() # instead of readLines()
read_delim() # instead of read.delim()
Basic math
Round number x to y decimal places ROUND(),y) round(x,y)
Round x down to nearest integer ROUNDDOWN(x,0) floor(x)
Round x up to nearest integer ROUNDUP(x,0) ceiling(x)
Min, max, sum of vector x MIN(x), =MAX(x), min(x); max(x); sum(x)
=SUM(x)
Square root of x (Vx) SQRT(x) sqrt(x)
Range of vector x (min & max) MIN(x), =MAX(x) range(x) # Output is vector
Square of x (x?) x"2 x"2
Logarithm of x, base 10 LOG(x) log10(x)
Natural log of x (base e =2.718...) LN(x) log(x)
e* (inverse of natural log) EXP(x) exp(x) # exp(log(x)) == x
Graphs
Make a graph 1: poke around chart menu | 1: plot, boxplot, etc
(depends on Excel 2: install ggplot2 package:
version) library(ggplot2)
2: search the web (ditto gplot(...) # Simple plots
below) ggplot(...) # Complex plots
Get help with graphs 1: poke around chart menu | 1: ?plot, ?boxplot, ?par

2: search the web

2: search the web

Make a scatterplot of vectors x and y

poke around chart menu

plot(x,y)

Save a graph to a file

export the Excel file as
HTML, which puts graphs
into a folder

when graph window is open, use
File/Save as menu

Put six plots into a 2-row by 3-column
arrangement

lots of plotting

1:par(mfrow=c(2,3))

for(i in 1:6){plot(runif(10))}
2:layout(matrix(1:6,nrow=2))
for(i in 1:6){plot(runif(10))}

Make a scatterplot of vectors x and y with
x-axis label "Age", y-axis label
"Accuracy", with x values from 0.5 to 1
and y values from 0 to 0.5

Same methods work for most plots,
including histograms

poke around chart menu

plot(x,y,
xlab = "Age",
ylab = "Accuracy",
xlim=c(0.5,1),
ylim=¢(0,0.5)

)

Make x & y scatterplot with no numbers

poke around chart menu

plot(x,y,xaxt="n",yaxt="n")

Add horizontal line to existing plot at y=3

NA

abline(h=3)

Add vertical line to existing plotat x =7

NA

abline(v=7)

Make a line plot of x (on x-axis) and y (on
y-axis)

poke around chart menu

plot(x,y,type="1")
Make sure x is sorted first!
type="1": line;
type="p" (points) default;
?plot for other types
?points pch for other dot
shapes

Make a bar graph of crossed values of Y =
a,b,c,d as a function of factors F=F1,F2
and G = G1, G2 in matrix M, with y-axis
starting at zero, and M and barplot like so:

M: Barplot: [* Gl]
F1 F2 *# 0 *# [#G2]
Gl a ¢ ab cd

G2 b d F1 F2

adjust Excel's automatic
y-axis to start it at zero
(recommended by many
statisticians to make scale
clear); R acts like Excel
here, in treating columns
(F) as the main label (in
names.arg) and rows (G)
as legend label (in
legend.test)

1:M = matrix(c(a,b,c,d),
nrow=2)
barplot(M, beside=T,

names.arg=c("F1","F2"),
legend.text=c("G1","G2"),
ylab — "Y")

2: search web or books for help on

using ggplot2

Make same bar graph as above, but use y-
axis range a to b, where a is not zero

poke around chart menu

barplot(M, beside=T,
legend.text=c("F1","F2"),
ylab ="Y", ylim=c(a,b),
xpd=F, # Keep bars inside
xaxt="n") # No x label yet

axis(side=1, at=c(2,5),
labels=c("G1", "G2"))

box(bty="1") # lower-case L

Plot standard histogram of sample S (S =
vector of numbers)

Analysis toolbox: H J7[El
use about 10 equal-sized
bins

hist(S)

Change number/size of bars in histogram
for S (remember for histograms, bar area
is what matters, not bar height)

Analysis toolbox: H J7[El
enter different bins

1: hist(S, breaks=3) # 3 bars
2: hist(S, breaks=c(0,10))
Breaks at points 0 and 10

Make box (and whiskers) plot

NA

boxplot(...) # cf. ?boxplot

Plot density of sample S

NA

plot(density(S))

Make line plot with solid line for variable
x1 and dashed line for variable x2 with
dependent variable y

poke around chart menu

plot(x1,y,type="1")
lines(x2,y,lty=2)
Ity is line type
lty=1 (solid) is default
1ty=2 is dashed
1ty=3 is dotted
Ilwd=2 is wider

Add a legend at the top right for a line plot
showing that the solid line represents Cats
and the dashed line represents Dogs

poke around chart menu

legend("topright",

Ity=c(1,2),
legend=c("Cats","Dog"))

Add upper + lower error bars to bar plot B
with n means M (vector), where each half
of the error bar has length E (e.g., E=1
sd, or E = SE, or E = one half of the 95%
confidence interval)

make bar plot, search
menu for error bars, enter
values you want

1:source("http://www.ccunix.
ccu.edu.tw/~Ingproc/
errorbar_Rcode.txt")
E.bars = rep(E,n)
error.bar(B,M,E.bars)

2: library(ggplot2)
B + geom_errorbar(

aes(ymin=M-E,
ymax=M+E))

Add linear regression line to scatter plot (x
on x-axis, y on y-axis)

right-click dots, choose fl

B4, then keep 4514
default

plot(x,y)
abline(Im(y~x))

Add local regression line to scatter plot (x
on x-axis, y on y-axis)

right-click dots, choose /][l
#3443, then choose %
BT

plot(x,y)
lines(predict(loess(y~x)))
sort x first

Make trellis plot for scatterplot y ~ x1 *
x2 (y, x1, x2 all numerical, and you want
to visualize the x1 x x2 interaction) in data
frame D, with linear best-fit lines for each

sort data by x1, divide x1
into a few (3-6) subsets,
plot y~x2 for each subset
(like method 3 for R)

1: library(lattice)
x1.eq = equal.count(D$x1)
xyplot(D$y ~ D$x2 | x1.eq,

panel = function(x, y) {
panel.xyplot(x, y)
panel.abline(Im(y~x))
}
)

2: library(ggplot2)
D$xIcuts = cut(D$x1, 7)
gplot(y, x2, data=D,

facets=~x1cuts) +
stat_smooth(method
:Hlm")
3: par(mfrow=c(2,3))#6 plots
D = D[order(D$x1),]
N = nrow(D)
n = ceiling(N/6)
rangey = range(DSy)
rangex2 = range(D$x2)
for (iin 1:6) {
minx1 = D$x1[n*(i-1)+1]
maxx1=D$x1[min(n*i,N)]
D.i= subset(D,
(D$x1 >=minx1 &
D$x1 <= maxx1))
plot(D.i$x2, D.i Sy,
xlab="x2", ylab="y",
main = paste("x1:
from",minx1,
"to",maxx1))
abline(Im(y~x2,
data=D.1))
}

Make trellis plot for scatterplot of y ~ x
with linear best-fit lines, with grouping
unit g (y & x numerical) in data frame D
Useful for LME and GLMM too

sort data by g, plot y~x for
each g (like method 3 for
R)

1:

2:

3:
#n & m divide up g neatly
rangex = range(D$x)
rangey = range(D$y)
for (i in l:length(g)) {

library(lattice)
xyplot(y ~ x | factor(g),
data =D)
library(ggplot2)
gplot(x, y, data=D,
facets = ~g) +
stat smooth(method
:lllm")
par(mfrow=c(n,m))

D.i=subset(D,D[D$g==i])

plot(Dx, Dy, main =i,

xlim = rangex,
ylim=rangey)

Make 3D scatterplot (x on x-axis, yony- | NA library(rgl)
axis, z on z-axis) plot3d(x,y,z)
Make 3D scatterplot, split into a series of | NA library(ggplot2)
2D scatterplots (x & y = independent y.cut = cut(y, 7)
variables, z = dependent variable) gplot(z, x, facets = ~y.cut)
Make mosaic plot of contingency table T NA mosaicplot(T)
Plot logistic regression model L for y~x sort data by x, divide y 1: plot(x,y)
into bins, within each bin curve(predict(L,

convert y to logits:
LN(AVERAGE(y)/
(1-AVERAGE(y))

data.frame(x=x),
type="response"),
add=T)

make scatterplot of 2: bins = cut(x,10) # Or more
logit(y)~x, logit.bin = function(x){
right-click dots, choose fi probl = mean(c(x,0,1))
i#Ehas, then keep 4314 prob0 = 1-probl
default return(log(prob1/prob0))
Like method 2 for R
meanx = tapply(x, bins,
mean)
logity = tapply(y, bins,
logit.bin)
plot(meanx, logity)
abline(Im(logity~meanx))
Descriptive statistics
Make a frequency table for sample S 1: Analysis toolbox: E /5 | 1: xtabs(~S)
2: table(S)
2: see handout for word
frequency example
Make a frequency table cross-classified by | basically do it by hand 1: xtabs(~x+y)
factors x and y (x = row, y = columns) 2: table(x,y)
Mean of sample S 1: AVERAGE(S) 1: mean(S)
2: SUM(S)/COUNT(S) 2: sum(S)/length(S)
Median of sample S MEDIAN(S) median(S)
Mode of sample S MODE(S) as.numeric(names(sort(
-table(S)))[1]) # Handout code
doesn't work (sorry)
Sample standard deviation of sample S STDEV(S) 1: sd(S)
2: sqrt(sum((S-mean(S))*2)/
(length(S)-1))
Sample variance of sample S 1: VAR(S) 1: var(S)
2: STDEV(S)"2 2: sd(S)"2

Randomness and permutations

Reset randomizer

Microsoft won't say

set.seed(1) # or any number

Given x things, calculate how many ways | COMBIN(x,y) choose(x,y)
to choose y things

Randomly select x values between 0 and 1 | copy and paste RAND() x | runif(x)

with equal probability times

Randomly select x values from a normal Analysis toolbox: rnorm(x,M,s)
(Gaussian) distribution with mean M and BLEE A 5

standard deviation s

Distributions

Plot normal distribution with mean M and
standard deviation s from SD = -3 to +3

create close z values from
-3 to +3, use
NORMDIST(z, 1,0,

1: curve(dnorm(x), -3, 3)
2: plot(function(z)
dnorm(z),-3, 3)

FALSE) to get density

instead of probability,

make line graph
z score of item x in sample S with mean M | STANDARDIZE(x,M,s) 1: (x-M)/s
and standard deviation s 2: scale(S)[S==x]
Probability of getting at most x heads iny | BINOMDIST(x,y,0.5,TR | pbinom(x,y,0.5)
coin flips (50% probability, x < y/2) UE)
Area to the left of z score in standard NORMSDIST(z) pnorm(z)
normal distribution (mean =0, SD = 1)
z score that marks area p to its left in NORMSINV(p) qnorm(p)
standard normal distribution
Make quantile-quantile norm plot of sort S from smallest to qqnorm(S)
sample S largest, number fromi= 1

to n; define expected

normal curve E with

NORMSINV((i-0.5)/n);

make a scatterplot of S vs.

E
Add line to QQ-norm plot (Excel and R right click any dot in QQ- | qqline(S)

don't add quite the same type of line)

plot, select fjjl_F &4
adds best-fit line

draws line between first and third
quantiles of ideal

One-tailed p value for given t value and df

T.DIST(ABS(t), df,
TRUE)

pt(-abs(t), df)
pt assumes a negative t!

Two-tailed p value for given t value and df

2*TDIST(ABS(t), df,
TRUE)

2*pt(-abs(t), df)

Plot t distribution with given df

T.DIST(t,df,FALSE) plus
cleverness

curve(dt(x,d),-3,3)

One-tailed p value for given F, df1 & df2
(as used in ANOVA and ratio tests)

FDIST(F,df1,df2) # Right
side

1: pf(F,df1,df2,lower.tail=F)
2: 1-pf(F,df1,df2)

Plot F distribution with given dfl & df2 FDIST and cleverness curve(df(x,df1,df2),0,5)
One-tailed p value for given y?> & df (as CHIDIST(%,df) 1: pchisq(y?,df,lower.tail=F)
used in chi-squared tests and elsewhere) 2: 1- pchisq(y?,df)

Plot y? distribution with given df CHIDIST and cleverness curve(dchisq(x,df),0,10)
One-tailed p value for at most x heads inn | BINOMDIST(x,n,0.5,TR | pbinom(x,n,0.5)

fair coin flips (binomial distribution) UE)

Plot binomial distribution for above n BINOMDIST(x,n,0.5,FAL | plot((0:n),dbinom((0:n),

SE) and cleverness

size=n, prob=0.5))

Factors

Convert vector S into a factor
Crucial to do this before
repeated-measures ANOVA using aov

NA

as.factor(S)

Convert factor F into an ordinal factor NA 1: F = ordered(F)
2: F = factor(F, ordered = T)
Creates polynomial coding:
F.L = linear component;
F.Q = F*2 (quadratic)
F.C = F*3 (cubic)

Relevel factor F (levels A and B) so that B | NA F =relevel(F,"B")

is the reference level (0 in dummy coding)

Convert factor F (levels A, B, C) into NA contrasts(F) =

effect (sum) coding, splitting F into FB contr.sum(levels(F))

(A=0, B=1, C=-1) and FC (A=0, B=-1,

C=1) # Effect coding is better if you want

to test interactions with F

Convert factor F (levels A, B) into effect NA contrasts(F) =

(sum) coding, changing F into FA (A=1, contr.sum(levels(F))

B=-1)

Convert factor F (levels A, B) into effect NA FB =2*(F=="B")-1

(sum) coding, changing F into FB (A=-1,

B=1) # Safer than above, in my experience

z, t, and F tests

Two-tailed p value for one-sample z test
with population p and ¢ and sample S

z= (AVERAGE(S)-) /

(6/SQRT(COUNT(S)))
p = 2*NORMSDIST(-
ABS(2))

z = (mean(S)-p) /

(o/sqrt(length(S)))

p = 2*pnorm(-abs(z))

Two-tailed p value for one-sample 7 test
with population p and sample S

t= (AVERAGE(S)- p)/
(STDEV(S)/
SQRT(COUNT(S)))

p =TDIST(ABS(1),

1:

t = (mean(S)-p) /
(sd(S)/sqrt(length(S)))

p = 2*pt(-abs(t),
df=length(S)-1)

COUNT(S)-1,2) 2: t.test(S,mu=p)

Unpaired ¢ test assuming equal variance | Analysis toolbox: 1: t.test(a, b, var.equal=T)
(homoscedastic) for a vs. b (levels of t ME WESEESEEE | 2: ttest(Y~X, var.equal=T)
factor X, with dependent variable Y) EIME o ke R

/%E"_:
Unpaired ¢ test not assuming equal Analysis toolbox: 1: t.test(a,b)
variance (heteroscedastic) for a vs. b t ME M{EEEE e | 2: ttest(Y~X)
(levels of X, with dependent variable Y) | =9t » L BECR

i
Paired ¢ test for a vs. b (levels of factor Analysis toolbox: 1: t.test(a, b, paired=T)

X, with dependent variable Y)

t RE ¢ R P E
FE

2: t.test(Y~X, paired=T)

One-tailed p value for a certain F value
and dﬁlumemwr and df(‘lenominator

FDIST(F, df,, dfy)

1:

2

1 - pf(F, dfy, dfy)

: pf(F, dfn, dfu, lower.tail=F)

One-tailed F test to test if samples a and
b come from populations with equal
variances, where s, > sp

Analysis toolbox:

F fgiE © Wi RERkRG 2
EEIRGE (a must be to
the left b)

1:

1 - pf(F, df,, dfy)

2: pf(F, df,, dfy, lower.tail=F)

Two-tailed F test to test if samples a and
b come from populations with equal
variances

FTEST(a, b)

var.test(x, y)

95% confidence interval for ¢ tests

Run analysis toolbox, get

critical value and variance
to compute using handout
formulas

t.test(...) gives upper and lower
value of confidence interval
automatically; to use in graph,
must find half its range: (max-
min)/2

10

x% confidence interval for ¢ tests

Run analysis toolbox using
alpha = 1-x/100, get critical

t.test(..., conf.level = x/100) gives
x% confidence interval

value and variance to automatically
compute using handout
formulas

Correlation and linear regression analysis

Pearson's correlation coefficient » (for CORREL(x,y) cor(x,y)

variables x and y)

Test significance of Pearson's correlation
coefficient (between x and y)

use correl-sig.xls or search
the Web for tools

1: cor.test(x, y)
2: summary(Im(y~x))

Multiple linear regression (y = dep; x1, x2
= indeps), with data in D

Analysis toolbox:
At

summary(lm(y~x1+x2, data=D))
data argument also used below

Likelihood ratio test for fit of simpler
model LO vs. fit of more complex L1

NA

anova(LO,L1)
L0 and L1 created by Im(...)

Test significance of indep x1 in linear
model y ~ x1 +x2

Analysis toolbox:
Al

1: summary(Im(y~x1+x2))
2: anova(M.no_x1,M.has x1)

Stepwise regression for y~x1+x2 in
dataframe D

NA

attach(D)
base.lm = Im(y~1)
summary(step(base.lm,y~x1+x2))

Test independent variables x1, x2, x3 for
collinearity in dataframe D (dependent
variable =y)

Analysis toolbox: #EEF
Then compute R? for
x1~x2+x3, then use VIF
formula in handout

1: library(car)
vif(Im(y~x1+x2+x3))
<5 1is good

2: kappa(D[c("x1","x2","x3")])
<30 is good

3: library(languageR)
collin.fnc(D[c("x1", "x2",

"x3"))$cnumber

Get predictions (y-hat) of simple linear
model predicting y from x for new data x'

FORECAST(X',y,x)
x' is just one value

predict(Im(y~x), newdata =
data.frame(x"))

x' is a vector; also works for
multiple regression

Get residuals of a linear model L for
dependent variable Y

Analysis toolbox: #HEF,
then use coefficients to
write equation to predict y-
hat, then subtract y-hat
from real values Y

1: resid(L)
2: Y-predict(L)

Standardize regression coefficients for
regression model y ~ x1 + x2 (also works
for generalized linear models and mixed-
effects models)

1: Use STANDARDIZE
onxl & x2 then
Analysis toolbox: #EIEF
on these z scores

2: Analysis toolbox: #EEF,

then for x1 coefficient
B1:B1 * STDEV(x1) /

1: summary(Im(y ~ scale(x1) +
scale(x2)

2: For x1 coefficient B1:
B1*sd(x1)/sd(y) # Same for x2

STDEV(y) # Same for x2
Repeated-measures regression y~x with Analysis toolbox: #HEF B.coef = numeric(length(g))
grouping variable g in data frame D (also AVERAGE(B) # Coef. for (i in 1:length(g)) {
applies to logistic & Poisson regression), STDEV(B) # SE D.i = subset(D,D[D$g==i])

where B= by-unit coefficients (e.g., B =
BO for intercept, or B = B1 for x slope)

#t, df, p from one-sample
t test (see above)

Im.i = Im(y~x, data=D.i)
B.coef[i] = summary(lm.i)
$coefficients["B","Estimate"]
}
t.test(B.coef) # gives all but SE
I'll add SE info after HW3...

ANOVA

One-way independent-measures ANOVA
(y = dependent; x = independent)

Analysis toolbox:

BT SR

1: summary(aov(y ~ x))
2: anova(lm(y ~ x))

11

Two-way independent-measures ANOVA
(y = dependent; x1, x2 = independents)

Analysis toolbox:
BT EEO T - B
L

1: summary(aov(y ~ x1*x2))
2: anova(lm(y ~ x1*x2))

One-way repeated-measures ANOVA (y =
dependent; x = indep; S= grouping unit)

Analysis toolbox:
N TE BT - EE
%

S = as.factor(S) # Make sure!
summary(aov(y ~ x + Error(S/x)))

Two-way repeated-measures ANOVA (y =

use repeated-measures

summary(aov(y ~ x1*x2

dep; x1, x2 = indeps; grouped by S) regression by hand +Error(S/(x1*x2))))
One type of mixed ANOVA (y = dep; x1 = | probably NA 1: summary(aov(y ~ x1*x2
between-group indep; x2 = within-group +Error(S/x2)))

indep, grouped by S)

2: library(ez) # Likewise
above
ezANOVA(dv =y, wid =S,
within = x2, between = x1)

Tukey HSD test [formula = any ANOVA
formula, e.g. y~x, or y~x+Error(S/x)]

use equation in handout and
find table of Studentized range
statistic q on the Web

1: TukeyHSD(aov(formula))
2: library(emmeans)
emmeans(aov(formula),
list(pairwise~x),
adjust="tukey")

Correct for sphericity violations in NA library(ez)
repeated-measures ANOVA in factors with ezANOVA(dv =y, wid =S,
more than two levels (y = dep; x = within- within = x)
group indep with 3 or more levels; S = # HFe = Huynh-Feldt epsilon
grouping unit; df = dfienominator) # p[HF] = its p value
correct df = original df *
HFe
Compute minF' for independent variable minF.F = minF.F =
x, using the following ANOVA results: (x.F1*x.F2/(x.F1+x.F2) (x.F1*x.F2/(x.F1+x.F2)

By-participant ANOVA:

x.F1: F value for x

x.dfnl: df for x levels (numerator)

x.dfd1: df for random (denominator)
By-item ANOVA:

x.F2: F value for x

x.dfn2: df for x levels (numerator)

x.dfd2: df for random (denominator)
Then you get the following:

minF.F: minF"

minF.dfn: df for x levels

minF.dfd: df for random

minF.p: p value

minF.dfn = x.dfnl # (= xdfn2)
minF.dfd =
(x.F1+x.F2)"2
/ (x.F172/x.dfd2 +
x.F272/x.dfd1)
minF.p = FDIST(minF.F,
minF.dfn, minF.dfd)

minF.dfn = x.dfnl # (= xdfn2)
minF.dfd =
(x.F1+x.F2)"2
/ (x.F172/x.dfd2 +
x.F272/x.dfd1)
minF.p = pf(minF.F, minF.dfn,
minF.dfd, lower.tail=F)

Contingency tables (and other simple categorical tests)

one-tailed p value for binomial test on
getting at most X in n binary events

BINOMDIST(x,n,0.5,TRUE)

1: pbinom(x, n, 0.5)
2: binom.test(x,n,alternative="Ieft")

One-way chi-squared test on vector V,
where Ho: all counts the same

CHITEST (observed,expected)
Must compute expected first

chisq.test(V)

One-way chi-squared test on vector V,
where Hy: counts = vector W

CHITEST (observed,expected)
Also, only gives p value

chisq.test(V, p = W)

Two-way chi-squared test for column x
row interaction in 2 X 2 matrix M

CHITEST (observed,expected)
Doesn't use Yate's correction

1: chisq.test(M) # With Yate's
2: summary(as.table(M))
Without Yate's correction

Two-way chi-squared test for column x
row interaction in larger matrix M

CHITEST (observed,expected)
Basically, forget this method

1: chisq.test(M)
2: summary(as.table(M))
Same: Yate's irrelevant

Two-tailed p value testing for column x
row interaction in contingency table M

NA

fisher.test(M)

Exact McNemar test for paired binary
data, with a (1,0) pairs and b (0,1) pairs

BINOMDIST(MIN(a,b), a+b,
0.5, TRUE)

pbinom(min(a,b), a+b, 0.5)

12

Logistic regression (and other generalized linear models)

Convert probability P into log odds LN(P/(1-P)) 1: In(P/(1-P))
(logit) 2: library(gtools)
logit(P)
Convert log odds L into probability EXP(L)/(1+EXP(L)) 1: exp(L)/(1 + exp(L))
2: library(gtools)
inv.logit(L)
Logistic regression model y ~ x1+x2 (yis | NA glm(y~x1+x2,
binary variable, all data are independent), family=binomial, data = D)
with data in data frame D # data argument also below
Show coefficients table for logistic NA summary(L)
regression model L # p-values based on Wald test
Predict log odds from logistic regression | NA predict(L)
model L
Predict binary observations (0 vs. 1) from | NA predict(L, type="response")
logistic regression model L
Likelihood ratio test for simpler NA anova(L0, L1 test="Chisq")
generalized linear regression model LO
vs. more complex L1 (applies to both
logistic regression and Poisson
regression)
Test parameter x1 of logistic regression NA L1 = glm(y~x1+x2,
model y~x1+x2 using likelihood ratio test family=binomial)
LO = glm(y~x2,
family=binomial)
anova(LO0, L1 test="Chisq")
Ordinal logistic regression y~x (y is NA library(MASS)
ordinal variable, all data are independent) summary(polr(y ~ x)
Table compares each level
with next level
Multinomial logistic regression y~x (y # Wald test only: library(nnet)
has three nominal values "A", "B", "C", z=B/SE summary(multinom(y ~ X))
all data independent) p =2*NORMSDIST(| # Table treats A as baseline
-ABS(z)) # Wald test for each row:
Likewise below z = B/SE # B = coefficient
p = 2*pnorm(-abs(z))
Poisson regression y ~ X (y is count data) | NA summary(glm(y~x, family=poisson))

Mixed-effects modeling (linear and generalized linear)

Maximal one-random-factor LME: NA 1: library(nlme)
y = dependent (continuous, normal) Ime(y~x1+x2, random = ~x1|g)
x1, x2 = independent 2: library(lme4) # Assumed elsewhere below
g = grouping unit (x1 grouped by g) Imer(y~x1+x2 + (x1]g))
Show results of LME model L NA summary(L)
Ime shows p, Imer doesn't
Always build/name model first, before using summary
because the model may take a long time to build
Get p values for LME model derived NA 1: Trust Ime output (controversial)

from formula structure y ~ x + (x|g)

2: 2*pnorm(-abs(t)) # Claims t = z (needs large N)
3: library(afex) # Loads Ime4 for you
L = mixed(y ~ x + (x|g)) # Kenward-Roger p
summary(L)
4: library(afex) # Loads Ime4 for you
Likelihood ratio tests (needs large N)
L = mixed(y ~ x + (x|g), method="LRT")
summary(L)
method="PB" not working for afex's mixed function;
Forget about ImerTest (worse than Kenward-Roger,
changes summary.lmer behavior)

13

Maximal two-random-factor additive LME | NA | 1: Imer(y~x1+x2 + (x1|gl) + (x2|g2))
(recommended by Barr et al., 2013): 2: Imer(y~x1+x2 + (1+x1|gl) + (1+x2|g2))
y = dependent (continuous, normal) # R assumes the intercepts automatically
x1, x2 = independent
gl = grouping unit for x1 (random effect)
g2 = grouping unit for x2 (random effect)
Maximal one-random-factor LME with NA | Imer(y~x1*x2 + ((x1*x2)|g))
interaction:
y = dependent (continuous, normal)
x1, x2 = independent
g = grouping unit for x1 & x2
Likelihood ratio test to compare fit of NA | anova(LO,L1)
simper LME model LO vs. complex L1
Likelihood ratio test for above to see if NA | L.1.2 = Imer(y~x1+x2 + (x1|gl) + (x2|g2))
random g2 variable is really necessary L.1 = Imer(y~x1+x2 + (x1|gl))
(not recommended by Barr et al., 2013, but anova(L.1, L.1.2)
cf. Raaijmakers et al., 1999)
LME without random intercepts (if NA | Imer(y~x + (x|g)) # Maximal model
maximal model fails to converge) lmer(y~x + (0+x|g)) # Next-best model
This and below also work for GLMM
LME without random intercept x slope NA | Imer(y~x + (0+x|g) + (1|g)) # Slope & intercept separate
interaction (if above also fails)
LME without random slopes (if all fails) NA | Imer(y~x + (1|g)) # Worst LME model (Barr et al., 2013)
Maximal one-random-factor mixed-effects | NA | 1: library(MASS)
logistic regression (a kind of GLMM): glmmPQL(y~x1+x2, random=~x1|g, family=binomial)
y = dependent (binary) 2: library(lme4) # Assumed elsewhere below
x1, x2 = independent glmer(y~x1+x2+(x1|g), family=binomial)
g = grouping unit (x1 grouped by g)
Maximal two-random-factor mixed-effects | NA | glmer(y~x1+x2 + (x1|gl) + (x2|g2), family=binomial)
logistic regression:
y = dependent (binary)
x1, x2 = independent
gl = grouping unit for x1 (random effect)
g2 = grouping unit for x2 (random effect)
Likelihood ratio test to compare fit of NA | anova(LO0, L1, test="Chisq")

simper GLMM model LO vs. more
complex L1

